首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Co-rotational finite element formulation for thin-walled beams with generic open section
【24h】

Co-rotational finite element formulation for thin-walled beams with generic open section

机译:通用开放截面薄壁梁的同向旋转有限元公式

获取原文
获取原文并翻译 | 示例

摘要

A consistent co-rotational total Lagrangian finite element formulation for the geometric nonlinear buckling and postbuckling analysis of thin-walled beams with generic open section is presented. The element developed here has two nodes with seven degrees of freedom per node. The element nodes are chosen to be located at the shear centers of the end cross-sections of the beam element and the shear center axis is chosen to be the reference axis. The deformations of the beam element are described in the current element coordinate system constructed at the current configuration of the beam element. The element nodal forces are derived using the virtual work principle. The virtual rigid body motion corresponding to the virtual nodal displacements is excluded in the derivation of the element nodal forces. A procedure is proposed to determine the virtual rigid body motion. The way used to determine the element coordinate system and element nodal deformations corresponding to the virtual nodal displacements and that corresponding to the incremental nodal displacement are consistent. In element nodal forces, all coupling among bending, twisting, and stretching deformations of the beam element is considered by consistent second-order linearization of the fully geometrically nonlinear beam theory. In the derivation of the element tangent stiffness matrix, the change of element nodal forces induced by the element rigid body rotations should be considered for the present method. Thus, a stability matrix is included in the element tangent stiffness matrix. An incremental-iterative method based on the Newton-Raphson method combined with constant arc length of incremental displacement vector is employed for the solution of nonlinear equilibrium equations. The zero value of the tangent stiffness matrix determinant of the structure is used as the criterion of the buckling state. Numerical examples are presented to investigate the accuracy and efficiency of the proposed method. The effect of the terms in the element nodal force and tangent stiffness matrix, which will converge to zero with the decrease of element size, on the convergence rate of solution and accuracy for the buckling load and nonlinear behavior of three dimensional beam structures are also investigated through numerical examples.
机译:提出了一种一致的总旋转拉格朗日有限元公式,用于具有通用开口截面的薄壁梁的几何非线性屈曲和后屈曲分析。这里开发的元素有两个节点,每个节点有七个自由度。选择单元节点位于梁单元末端横截面的剪切中心,选择剪切中心轴作为参考轴。梁单元的变形在以梁单元的当前配置构造的当前单元坐标系中描述。单元节点力是使用虚拟功原理导出的。在单元节点力的推导中排除了与虚拟节点位移相对应的虚拟刚体运动。提出了确定虚拟刚体运动的程序。确定与虚拟节点位移对应的元素坐标系和元素节点变形以及与增量节点位移对应的元素节点变形的方法是一致的。在单元节点力中,梁的弯曲,扭曲和拉伸变形之间的所有耦合都通过完全几何非线性梁理论的一致二阶线性化来考虑。在推导单元切线刚度矩阵时,本方法应考虑单元刚体旋转引起的单元节点力的变化。因此,将稳定性矩阵包括在单元切线刚度矩阵中。采用基于牛顿-拉夫森法的增量迭代法,结合增量位移矢量的恒定弧长,求解非线性平衡方程。结构的切线刚度矩阵行列式的零值用作屈曲状态的判据。数值例子表明了该方法的准确性和有效性。还研究了单元节点力和切线刚度矩阵中的项随着单元尺寸的减小而收敛为零的影响,对求解收敛速度和三维梁结构屈曲载荷及非线性行为的精度的影响。通过数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号