首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fictitious domain approach with spread interface for elliptic problems with general boundary conditions
【24h】

A fictitious domain approach with spread interface for elliptic problems with general boundary conditions

机译:具有一般边界条件的椭圆问题的具有扩展接口的虚拟域方法

获取原文
获取原文并翻译 | 示例

摘要

The aim of this article is to solve second-order elliptic problems in an original physical domain using a fictitious domain method with a spread interface approach. The main idea of the fictitious domain approach consists in immersing the original domain of study into a geometrically bigger and simpler one called fictitious domain. As the spatial discretization is being performed in the fictitious domain, this method allows the use of structured meshes. The discretization is not boundary-fitted to the original physical domain. This paper describes several ways to impose Dirichlet, Robin or Neumann boundary conditions on a spread immersed interface, without locally modifying the numerical scheme and without using Lagrange multipliers. The numerical applications focus on diffusion and convection problems in the unit disk, with Dirichlet or Robin boundary conditions. For such problems, analytical solutions can be determined for a correctly chosen source term. The numerical resolution is performed using a L_1 Finite Element scheme. The spread interface approach is then combined with a local adaptive mesh refinement algorithm in order to increase the precision in the vicinity of the immersed boundary. The L~2 norm of the errors is computed in order to evaluate the capability of the method. Immersed boundaries are found in many industrial applications like two-phase flow simulations, fluid/structure interaction, etc. This article represents a first step towards the simulation of these kinds of applications.
机译:本文的目的是使用带有扩展接口方法的虚拟域方法来解决原始物理域中的二阶椭圆问题。虚拟域方法的主要思想在于将研究的原始领域沉浸在几何上更大,更简单的虚拟域中。当在虚拟域中执行空间离散化时,此方法允许使用结构化网格。离散化不适合原始物理域。本文介绍了几种在扩散浸没接口上施加Dirichlet,Robin或Neumann边界条件的方法,而无需局部修改数值方案且不使用Lagrange乘法器。数值应用集中在具有Dirichlet或Robin边界条件的单位圆盘中的扩散和对流问题上。对于此类问题,可以为正确选择的源术语确定分析解决方案。使用L_1有限元方案执行数字分辨率。然后,将扩展接口方法与局部自适应网格细化算法相结合,以提高沉浸边界附近的精度。计算误差的L〜2范数以评估该方法的能力。在许多工业应用中都发现了浸入式边界,例如两相流模拟,流体/结构相互作用等。本文代表了迈向此类应用的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号