首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >On Plastic Incompressibility Within Time-adaptive Finite Elements Combined With Projection Techniques
【24h】

On Plastic Incompressibility Within Time-adaptive Finite Elements Combined With Projection Techniques

机译:时间自适应有限元内塑性不可压缩与投影技术的结合

获取原文
获取原文并翻译 | 示例

摘要

This article treats the interpretation of quasi-static finite elements applied to constitutive equations of evolutionary-type as a solution scheme to solve globally differential-algebraic equations. This concept is applied to finite strain viscoplasticity based on a model with non-linear kinematic hardening under the assumption of plastic incompressibility. The model is based on multiple multiplicative decomposition both for the deformation gradient into an elastic and an inelastic part as well as for the inelastic part into a kinematic hardening (energy storage) and a dissipative part. Both intermediate configurations are described by inelastic right Cauchy-Green tensors satisfying inelastic incompressibility in the theoretical context. The attention in view of the numerical treatment within finite elements is focused on diagonally implicit Runge-Kutta methods which destroy the assumption of plastic incompressibility during the time-integration due to an additive structure of the integration step. In combination with a Multilevel-Newton algorithm these algorithms embed the classical strain-driven radial-return method. To this end, a concept of geometric numerical integration is applied, where the plastic incompressibility condition is taken into account as an additional side-condition. Since the literature states large integration errors if the side-condition is not taken into account, a particular focus lies on the application of a time-adaptive procedure. Accordingly, the article investigates (i) the algorithmic treatment of kinematic hardening within time-adaptive finite elements, (ii) the influence of the Perzyna-type viscoplasticity approach in view of an order reduction phenomenon, and (iii) the influence of taking into account the exact fulfillment of plastic incompressibility using a projection method having the advantage of simple implementation.
机译:本文将对应用于演化型本构方程的准静态有限元的解释作为一种解决方案,用于求解整体微分代数方程。在具有塑性不可压缩性的前提下,该概念基于具有非线性运动硬化模型的有限应变粘塑性。该模型基于针对弹性和非弹性部分的变形梯度,以及针对运动硬化(能量存储)和耗散部分的非弹性部分的多重乘法分解。两种中间构型均由满足理论上非弹性不可压缩性的非弹性右柯西-格林张量描述。考虑到有限元内的数值处理,注意力集中在对角隐式Runge-Kutta方法上,该方法由于积分步骤的累加结构而破坏了时间积分过程中塑性不可压缩的假设。结合多级牛顿算法,这些算法嵌入了经典的应变驱动径向返回方法。为此,应用了几何数值积分的概念,其中将塑性不可压缩条件作为附加的副条件考虑在内。由于文献指出如果不考虑附加条件,则积分误差较大,因此,特别需要关注时间自适应过程的应用。因此,本文研究了(i)在时间自适应有限元内进行运动硬化的算法处理,(ii)考虑到有序减少现象,Perzyna型粘塑性方法的影响,以及(iii)考虑到使用具有简单实施的优点的投影方法解决了塑性不可压缩性的精确实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号