首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Galerkin Projected Residual Method Applied To Diffusion-reaction Problems
【24h】

Galerkin Projected Residual Method Applied To Diffusion-reaction Problems

机译:Galerkin投影残差法在扩散反应问题中的应用

获取原文
获取原文并翻译 | 示例

摘要

A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion-reaction problems. Optimal rates of convergency are numerically observed for regular solutions.
机译:针对标量和线性二阶边值问题,提出了一种稳定的有限元方法。通过向Galerkin公式添加微分方程残差在元素级别的多个投影来获得该方法。这些多个投影允许根据近似的局部空间和微分算子在元素矩阵中生成适当数量的自由稳定参数。可以通过施加一些收敛性和/或稳定性标准或通过假设元素矩阵具有所需的稳定性来确定自由参数。可以使用此新方法以及适当选择的稳定参数来获得大多数稳定方法(例如GLS和GGLS方法)的元素矩阵。我们将此公式应用于扩散反应问题。对于常规解,可以通过数值观察到最佳收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号