首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Reproducing Polynomial (singularity) Particle Methods And Adaptive Meshless Methods For Two-dimensional Elliptic Boundary Value Problems
【24h】

Reproducing Polynomial (singularity) Particle Methods And Adaptive Meshless Methods For Two-dimensional Elliptic Boundary Value Problems

机译:二维椭圆边值问题的多项式(奇异性)粒子方法和自适应无网格方法

获取原文
获取原文并翻译 | 示例

摘要

Oh et al. [H.-S. Oh, J.G. Kim, J.W. Jeong, The closed form reproducing polynomial particle shape functions for meshfree particle methods, Comput. Methods Appl. Mech. Engrg. 196 (2007) 3435-3461] introduced the reproducing polynomial particle (RPP) shape functions that are piecewise polynomial and satisfy the Kronecker delta property. In this paper, we introduce reproducing polynomial particle methods (RPPM) that is the Galerkin approximation method associated with the use of the RPP approximation space. Planting particles in the computation domain in a patchwise uniform manner, we also introduce patch-wise RPPM. Furthermore, constructing partition of unity functions with flat-top adaptively, we introduce adaptive patchwise RPPM and compare it with reproducing singularity particle methods (RSPM) that is the Galerkin approximation method associated with the use of reproducing singularity particle (RSP) shape functions.
机译:哦,等。 [H.-S.哦J.G.金J Jeong,适用于无网格粒子方法的闭合形式复制多项式粒子形状函数,计算机。方法应用。机甲gr 196(2007)3435-3461]介绍了分段多项式并满足Kronecker增量属性的再现多项式粒子(RPP)形状函数。在本文中,我们介绍了再生多项式粒子法(RPPM),这是与使用RPP近似空间相关的Galerkin近似方法。以逐块均匀的方式在计算域中植入粒子,我们还介绍了逐块RPPM。此外,通过平顶自适应地构造单位函数的划分,我们介绍了自适应逐块RPPM,并将其与再现奇点粒子方法(RSPM)进行比较,RSPM是与再现奇点粒子(RSP)形状函数的使用相关的Galerkin近似方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号