首页> 外文期刊>International Journal of Computational Materials Science and Engineering >The meshless method for two-dimensional space-time fractional dispersion equation based on reproducing kernel particle method
【24h】

The meshless method for two-dimensional space-time fractional dispersion equation based on reproducing kernel particle method

机译:基于再现核颗粒方法的二维时空分数色散方程的无网丝法

获取原文
获取原文并翻译 | 示例

摘要

The two-dimensional space fractional dispersion equation (SFDE) is obtained from the standard dispersion equation by replacing the two second-order space derivatives by the Riemann-Liouville fractional derivatives. A numerical analysis of the two-dimensional SFDE is presented based on the reproducing kernel particle method (RKPM). The final algebraic equation system is obtained by employing Galerkin weak form and functional minimization procedure. The Riemann-Liouville operator is discretized by the shifted Griinwald formula. The fully-discrete approximation schemes for SFDE are established using center difference method and RKPM and the shifted Griinwald formula. Numerical simulations for SFDE with known exact solution were presented in the format of the tables and graphs. The presented results demonstrate the validity, efficiency and accuracy of the proposed techniques. Furthermore, the error estimate of RKPM for SFDE has been analyzed, which shows that this method has reasonable convergence rates in spatial and temporal discretizations.
机译:通过替换黎曼 - Liouville分数衍生物的两个二阶空间衍生物,从标准分散方程获得二维空间分数分散方程(SFDE)。基于再现核颗粒方法(RKPM)呈现了二维SFDE的数值分析。通过使用Galerkin弱形式和功能最小化程序获得最终的代数方程系统。 RIEMANN-LIOUVILLE运营商由移位的GRIINWALD公式离散化。使用中心差分方法和RKPM和移位的GRIINWALD公式建立SFDE的完全离散近似方案。具有已知精确解决方案的SFDE的数值模拟以表格和图形的格式呈现。所提出的结果表明了所提出的技术的有效性,效率和准确性。此外,已经分析了SFDE的RKPM的误差估计,这表明该方法具有空间和时间离散化的合理收敛速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号