首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems
【24h】

An algebraic variational multiscale-multigrid method based on plain aggregation for convection-diffusion problems

机译:对流扩散问题的基于平原聚合的代数变分多尺度多重网格方法

获取原文
获取原文并翻译 | 示例

摘要

A new computational framework referred to as algebraic variational multiscale-multigrid method is proposed, representing the initial step of our work on merging the variational multiscale method with algebraic multigrid projection methods. This new approach allows for a separation of resolved scales into various scale groups in a purely algebraic way, that is, with no need to utilize further discretizations beyond the basic one. By this means, it conveniently facilitates the application of modeling terms either to all scale groups or only to selected scale groups, for instance, only to the fine scales of the problem. Variational multigrid techniques form the basis of our new approach. After presenting the cornerstones of the framework for an abstract problem formulation, the close relationship of the variational multiscale method to projection methods in general and to variational multigrid techniques are discussed. The algebraic variational multiscale-multigrid method is then particularly analyzed for convection-diffusion problems. The present initial study focuses on exploiting the methodical aspects of the new framework by developing a fine-scale discontinuity-capturing approach to diminish oscillations at sharp layers. Our technique including a fine-scale discontinuity-capturing term is applied to numerical examples of strongly convection-dominated convection-diffusion problems. The results demonstrate that it enables the diminuation of local oscillations at parabolic boundary and interior layers by about 60-80% without any notable smearing effect.
机译:提出了一种新的计算框架,称为代数变分多尺度-多重网格方法,代表了我们将变分多尺度方法与代数多网格投影方法相结合的工作的第一步。这种新方法允许以纯代数的方式将解析的音阶分为多个音阶组,也就是说,无需利用除基本音阶以外的其他离散化。通过这种方式,它可以方便地将建模项应用于所有比例组或仅应用于选定的比例组,例如仅应用于问题的精细比例。可变的多重网格技术构成了我们新方法的基础。在提出了抽象问题表述框架的基础之后,讨论了变分多尺度方法与一般的投影方法以及变分多网格技术的紧密关系。然后,针对对流扩散问题,专门分析了代数变分多尺度多重网格方法。目前的初步研究重点在于通过开发一种精细的不连续性捕获方法来减少尖锐层的振荡,从而利用新框架的方法方面。我们的技术(包括精细尺度的不连续捕获项)被应用于强对流占主导地位的对流扩散问题的数值示例。结果表明,它可以使抛物线边界和内层的局部振荡减小约60-80%,而不会产生任何明显的拖尾效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号