首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices
【24h】

A discontinuous Galerkin solver for Boltzmann-Poisson systems in nano devices

机译:用于纳米器件中玻尔兹曼-泊松系统的不连续Galerkin解算器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present results of a discontinuous Galerkin (DG) scheme applied to deterministic computations of the transients for the Boltzmann-Poisson system describing electron transport in semiconductor devices. The collisional term models optical-phonon interactions which become dominant under strong energetic conditions corresponding to nano-scale active regions under applied bias. The proposed numerical technique is a finite element method using discontinuous piecewise polynomials as basis functions on unstructured meshes. It is applied to simulate hot electron transport in bulk silicon, in a silicon n~+- n-n~+ diode and in a double gated 12 nm MOSFET. Additionally, the obtained results are compared to those of a high order WEN0 scheme simulation and DSMC (Discrete Simulation Monte Carlo) solvers.
机译:在本文中,我们介绍了不连续Galerkin(DG)方案的结果,该方案用于描述半导体器件中电子传输的Boltzmann-Poisson系统瞬态的确定性计算。碰撞项模拟了光学声子相互作用,该声子相互作用在强能量条件下占主导地位,而高能条件对应于施加偏压下的纳米级活性区域。所提出的数值技术是一种使用不连续分段多项式作为非结构化网格上的基函数的有限元方法。它被用于模拟体硅,n〜+-n-n〜+硅二极管和双栅极12 nm MOSFET中的热电子传输。此外,将获得的结果与高阶WEN0方案仿真器和DSMC(离散仿真蒙特卡洛)求解器的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号