首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Discontinuous Galerkin deterministic solvers for a Boltzmann-Poisson model of hot electron transport by averaged empirical pseudopotential band structures
【24h】

Discontinuous Galerkin deterministic solvers for a Boltzmann-Poisson model of hot electron transport by averaged empirical pseudopotential band structures

机译:平均经验伪势能带结构的热电子传输玻尔兹曼-泊松模型的不连续Galerkin确定性求解器

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this work is to incorporate numerically, in a discontinuous Galerkin (DG) solver of a Boltzmann-Poisson model for hot electron transport, an electronic conduction band whose values are obtained by the spherical averaging of the full band structure given by a local empirical pseudopotential method (EPM) around a local minimum of the conduction band for silicon, as a midpoint between a radial band model and an anisotropic full band, in order to provide a more accurate physical description of the electron group velocity and conduction energy band structure in a semiconductor. This gives a better quantitative description of the transport and collision phenomena that fundamentally define the behavior of the Boltzmann-Poisson model for electron transport used in this work. The numerical values of the derivatives of this conduction energy band, needed for the description of the electron group velocity, are obtained by means of a cubic spline interpolation. The EPM-Boltzmann-Poisson transport with this spherically averaged EPM calculated energy surface is numerically simulated and compared to the output of traditional analytic band models such as the parabolic and Kane bands, numerically implemented too, for the case of 1D n(+) -n -n(+) silicon diodes with 400 and 50 nm channels. Quantitative differences are observed in the kinetic moments related to the conduction energy band used, such as mean velocity, average energy, and electric current (momentum), as well as the IV-curves. (C) 2017 Elsevier B.V. All rights reserved.
机译:这项工作的目的是在一个用于热电子传输的Boltzmann-Poisson模型的不连续Galerkin(DG)解算器中,将一个电子导带并入数值,该导带的值是通过局部给定的全能带结构的球面求平均值来获得经验伪电势方法(EPM)围绕硅的导带局部最小值,作为径向带模型和各向异性全带之间的中点,以便提供对电子基团速度和传导能带结构的更精确的物理描述在半导体中。这为传输和碰撞现象提供了更好的定量描述,这些现象从根本上定义了用于这项工作的电子传输的玻尔兹曼-泊松模型的行为。描述电子群速度所需的该导能带导数的数值是通过三次样条插值获得的。对具有此球面平均EPM计算出的能量面的EPM-Boltzmann-Poisson输运进行了数值模拟,并将其与传统解析带模型(如抛物线和凯恩带)的输出进行了比较,对于一维n(+)情况,该模型也通过数值实现了-具有400和50 nm通道的n -n(+)硅二极管。在与所使用的传导能带相关的动量中观察到数量差异,例如平均速度,平均能量和电流(动量),以及IV曲线。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号