首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields
【24h】

Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields

机译:利用向量值随机变量和随机场的随机系数减少混沌分解

获取原文
获取原文并翻译 | 示例

摘要

We develop a stochastic functional representation that is adapted to problems involving various forms of epistemic uncertainties including modeling error and data paucity. The new representation builds on the polynomial Chaos decomposition and eventually yields a Karhunen-Loeve expansion with random multiplicative coefficients. In this expansion, one set of uncertainty is captured in the usual manner, as uncor-related scalar random variables. Another component of the uncertainty, statistically independent from the first, is captured by constructing the, usually deterministic, functions in the KL expansion as random functions. We think of the first set of uncertainties as associated with a coarse scale model, and of the second set as associated with subscale fluctuations not captured in the coarse scale description.
机译:我们开发了一种随机功能表示,适用于涉及各种形式的认知不确定性(包括建模错误和数据匮乏)的问题。新的表示法基于多项式混沌分解,并最终产生具有随机乘数系数的Karhunen-Loeve展开。在这种扩展中,以通常的方式捕获了一组不确定性,作为不相关的标量随机变量。通过将KL展开中通常为确定性的函数构造为随机函数,可以捕获不确定性的另一个组成部分,该组成部分与第一个无关。我们认为第一组不确定性与粗尺度模型相关,第二组不确定性与未在粗尺度描述中捕获的子尺度波动相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号