首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data
【24h】

Identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data

机译:使用部分和有限实验数据识别具有非系数的非高斯张量值随机场的高维多项式混沌展开

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the identification of high-dimension polynomial chaos expansions with random coefficients for non-Gaussian tensor-valued random fields using partial and limited experimental data. The experimental data sets correspond to partial experimental data made up of an observation vector which is the response of a stochastic boundary value problem depending on the tensor-valued random field which has to be identified. So an inverse stochastic problem has to be solved to carry out the identification of the random field. A complete methodology is proposed to solve this challenging problem and consists in introducing a family of prior probability models, in identifying an optimal prior model in the constructed family using the experimental data, in constructing a statistical reduced order optimal prior model, in constructing the polynomial chaos expansion with deterministic vector-valued coefficients of the reduced order optimal prior model and finally, in constructing the probability distribution of random coefficients of the polynomial chaos expansion and in identifying the parameters using experimental data. An application is presented for which several millions of random coefficients are identified solving an inverse stochastic problem.
机译:本文致力于使用部分和有限的实验数据,对具有非系数的非高斯张量值随机场的高阶多项式混沌展开进行识别。实验数据集对应于由观察向量组成的部分实验数据,该观察向量是随机边界值问题的响应,取决于要确定的张量值随机场。因此,必须解决逆随机问题以进行随机场的识别。提出了一种完整的方法来解决这一具有挑战性的问题,该方法包括引入先验概率模型族,使用实验数据在构造的族中识别最佳先验模型,构建统计降阶最优先验模型,构建多项式。最后,在构造多项式混沌展开的随机系数的概率分布以及使用实验数据确定参数的过程中,使用降阶最佳先验模型的确定性矢量值系数进行混沌展开。提出了一种应用,其中识别出数百万个随机系数,以解决逆随机问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号