首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Augmented Lagrangian method for Eulerian modeling of viscoplastic crystals
【24h】

Augmented Lagrangian method for Eulerian modeling of viscoplastic crystals

机译:增粘拉格朗日方法用于粘塑性晶体的欧拉建模

获取原文
获取原文并翻译 | 示例

摘要

A robust numerical algorithm for an Eulerian rigid-viscoplastic crystal model that accounts for high-strain rates, large strains, and large material and lattice rotations, was developed. The viscoplastic law is obtained from Schmid law by using an overstress approach; the numerical instabilities associated to the classical Norton law are thus eliminated.rnA time implicit (backward) Euler scheme for time discretization, was used. At each time iteration, a four steps iterative algorithm was proposed. To handle the non-differentiability of the plastic terms an iterative decomposition-coordination formulation coupled with the augmented Lagrangian method was adopted. This formulation was modified to fit to the crystal (non-isotropic) viscoplastic model, for which the stress deviator is not coaxial with the rate of deformation tensor. The proposed algorithm is consistent and permits to solve alternatively, at each iteration, the equations for the velocity field and for the lattice orientation. A mixed finite element-finite volume strategy was adopted: the equation for the velocity field is discretized using the finite element method while a finite volume method, with an upwind choice of the flux, is adopted for the hyperbolic equation related to the lattice orientation.rnSeveral two-dimensional boundary value problems are selected to analyze the robustness of the numerical algorithm. The influence of the mesh and of the time step on simulation of the in-plane flow of a fcc crystal in an equal channel angular die extruder was investigated. The transitional flow of a grain embedded in a parent crystal was computed. The grains interaction during channel die compression of a multi-crystal was analyzed using an ALE description.
机译:针对欧拉刚粘塑性晶体模型的鲁棒数值算法,该模型考虑了高应变速率,大应变以及大的材料和晶格旋转。粘塑性定律是通过施压法从施密德定律获得的;因此,消除了与经典诺顿定律相关的数值不稳定性。使用了时间隐式(后向)Euler方案进行时间离散化。在每次迭代时,提出了一种四步迭代算法。为了处理塑性项的不可微性,采用了迭代分解-配位公式和增强拉格朗日方法。修改此公式以适合晶体(非各向同性)粘塑性模型,该模型的应力偏差与变形张量的速率不同。所提出的算法是一致的,并且允许在每次迭代时求解速度场和晶格取向的方程。采用了混合有限元-有限体积策略:使用有限元方法离散化了速度场方程,而对于与晶格取向有关的双曲方程,采用了有限体积方法,并选择了迎角方向的通量。选择了几个二维边值问题来分析数值算法的鲁棒性。研究了网格和时间步长对等通道角模挤出机中fcc晶体面内流动模拟的影响。计算了嵌入母体晶体中的晶粒的过渡流。使用ALE描述分析了多晶通道冲模压缩过程中的晶粒相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号