首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method
【24h】

A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift-diffusion models coupled with Eulerian discontinuous spectral element method

机译:一种高阶半拉格朗日方法,用于一致的Monte-Carlo解决方案的随机拉格朗日漂移 - 扩散模型与欧拉不连续谱元法相结合

获取原文
获取原文并翻译 | 示例

摘要

The explicit semi-Lagrangian method for solution of Lagrangian transport equations as developed in Natarajan and Jacobs (2020) is adopted for the solution of stochastic differential equations that is consistent with Discontinuous Spectral Element Method (DSEM) approximations of Eulerian conservation laws. The method extends the favorable properties of DSEM that include its high-order accuracy, its local and boundary fitted properties and its high performance on parallel platforms for the concurrent Monte-Carlo, semi-Lagrangian and Eulerian solution of a class of time-dependent problems that can be described by coupled Eulerian-Lagrangian formulations. Such formulations include the probabilistic models used for the simulation of chemically reacting turbulent flows or particle-laden flows. Consistent with an explicit, DSEM discretization, the semi-Lagrangian method seeds particles at Gauss quadrature collocation nodes within a spectral element. The particles are integrated explicitly in time according to a drift velocity and a Wiener increment forcing and form the nodal basis for an advected interpolant. This interpolant is mapped back in a semi-Lagrangian fashion to the Gauss quadrature points through a least squares fit using constraints for element boundary values. Stochastic Monte-Carlo samples are averaged element-wise on the quadrature nodes. The stable explicit time step Wiener increment is sufficiently small to prevent particles from leaving the element's bounds. The semi-Lagrangian method is hence local and parallel and does not have the grid complexity, and parallelization challenges of the commonly used Lagrangian particle solvers in particle-mesh methods for solution of Eulerian-Lagrangian formulations. Formal proof is presented that the semi-Lagrangian algorithm evolves the solution according to the Eulerian Fokker-Planck equation. Numerical tests in one and two dimensions for drift-diffusion problems show that the method converges exponentially for constant and non-constant advection and diffusion velocities. (C) 2021 TheAuthor(s). Published by ElsevierB.V.
机译:采用了Natarajan和Jacobs开发的拉格朗日传输方程解的显式半拉格朗日方法,用于与欧拉保护法的不连续光谱元素法(DSEM)近似的随机微分方程的解决方案的解决方案。该方法扩展了DSEM的有利性质,包括其高阶精度,其本地和边界拟合特性及其在一类时间依赖问题的并发蒙特卡罗,半拉格朗日和欧拉方案的并行平台上的高性能可以通过耦合的Eulerian-Lagrangian配方描述。这种制剂包括用于模拟化学反应湍流流或粒子流动的概率模型。与显式DSEM离散化,半拉格朗日方法种子粒子在光谱元件内的高斯正交搭配节点处颗粒。根据漂移速度和维纳增量强制迫使颗粒在时间上明确地集成,并形成一个完全的偶论的节点基础。通过最小二乘适用于元素边界值的约束,将该插值以半拉格朗日方式映射到高斯正交点。随机蒙特卡罗样本在正交节点上平均元素明智。稳定的明确时间步骤维纳增量足够小,以防止粒子离开元素的界限。因此,半拉格朗日方法是本地的和平行的,并且在粒子 - 拉格朗日配方溶液溶液中,常用的拉格朗日颗粒溶剂的普通使用的拉格朗日颗粒溶剂的平行化挑战并不具有网格复杂性和平行化挑战。提出了正式证据,即半拉格朗日算法根据Eulerian Fokker-Planck方程演变解决方案。用于漂移扩散问题的一个和两个维度的数值测试表明,该方法会聚以恒定和非恒定的平流和扩散速度指数地收敛。 (c)2021 TheAuthor。由elsevierb.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号