首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches
【24h】

The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches

机译:弯曲带方法用于由多个斑块组成的Kirchhoff-Love壳结构的等几何分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present an isogeometric formulation for rotation-free thin shell analysis of structures comprised of multiple patches. The structural patches are C~1- or higher-order continuous in the interior, and are joined with C~0-continuity. The Kirchhoff-Love shell theory that relies on higher-order continuity of the basis functions is employed in the patch interior as presented in Kiendl et al. [36]. For the treatment of patch boundaries, a method is developed in which strips of fictitious material with unidirectional bending stiffness and zero membrane stiffness are added at patch interfaces. The direction of bending stiffness is chosen to be transverse to the patch interface. This choice leads to an approximate satisfaction of the appropriate kinematic constraints at patch interfaces without introducing additional stiffness to the shell structure. The attractive features of the method include simplicity of implementation and direct applicability to complex, multi-patch shell structures. The good performance of the bending strip method is demonstrated on a set of benchmark examples. Application to a wind turbine rotor subjected to realistic wind loads is also shown. Extension of the bending strip approach to the coupling of solids and shells is proposed and demonstrated numerically.
机译:在本文中,我们提出了用于由多个面片组成的结构的无旋转薄壳分析的等几何公式。结构补丁在内部是C〜1或更高阶连续的,并以C〜0连续性相连。如Kiendl等人所述,在基片内部采用了依赖基函数高阶连续性的Kirchhoff-Love壳理论。 [36]。为了处理补丁边界,开发了一种方法,其中在补丁界面处添加具有单向弯曲刚度和零膜刚度的虚拟材料带。弯曲刚度的方向选择为垂直于贴片界面。这种选择可以使贴片界面处的运动学约束得到大致满足,而不会给壳体结构带来额外的刚度。该方法的吸引人的特征包括实施的简便性以及对复杂的多面体壳体结构的直接适用性。一组基准示例证明了弯折带法的良好性能。还示出了在经受实际风载荷的风力涡轮机转子上的应用。提出了弯曲带方法扩展到固体和壳的耦合的方法,并进行了数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号