首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension
【24h】

A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension

机译:贝叶斯方法在超高维中识别非高斯随机场的计算逆方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the identification of Bayesian posteriors for the random coefficients of the high-dimension polynomial chaos expansions of non-Gaussian tensor-valued random fields using partial and limited experimental data. The experimental data sets correspond to an observation vector which is the response of a stochastic boundary value problem depending on the tensor-valued random field which has to be identified. So an inverse stochastic problem must be solved to perform the identification of the random field. A complete methodology is proposed to solve this very challenging problem in high dimension, which consists in using the first four steps introduced in a previous paper, followed by the identification of the posterior model. The steps of the methodology are the following: (1) introduction of a family of prior algebraic stochastic model (PASM), (2) identification of an optimal PASM in the constructed family using the partial experimental data, (3) construction of a statistical reduced-order optimal PASM, (4) construction, in high dimension, of the polynomial chaos expansion with deterministic vector-valued coefficients of the reduced-order optimal PASM, (5) substitution of these deterministic vector-valued coefficients by random vector-valued coefficients in order to extend the capability of the polynomial chaos expansion to represent the experimental data and for which the joint probability distribution must be identified, (6) construction of the prior probability model of these random vector-valued coefficients and finally, (7) identification of the posterior probability model of these random vector-valued coefficients using partial and limited experimental data, through the stochastic boundary value problem. Two methods are proposed to carry out the identification of the posterior model. The first one is based on the use of the classical Bayesian method. The second one is a new approach derived from the Bayesian method, which is more efficient in high dimension. An application is presented for which several millions of random coefficients are identified.
机译:本文利用部分和有限的实验数据,对非高斯张量值随机场的高维多项式混沌展开的随机系数进行贝叶斯后验识别。实验数据集对应于观察向量,该观察向量是随机边界值问题的响应,取决于必须识别的张量值随机场。因此,必须解决逆随机问题以进行随机场的识别。提出了一种完整的方法论来解决这个非常具有挑战性的高维问题,该方法包括使用上一篇论文介绍的前四个步骤,然后确定后验模型。该方法的步骤如下:(1)引入一个先验代数随机模型(PASM)系列,(2)使用部分实验数据在构造的家族中识别最佳PASM,(3)构建统计数据降阶最优PASM,(4)用降阶最优PASM的确定性矢量值系数以高维构造多项式混沌展开,(5)用随机矢量值代替这些确定性矢量值系数为了扩展多项式混沌展开表示实验数据的能力并必须确定联合概率分布的系数,(6)构建这些随机矢量值系数的先验概率模型,最后,(7)通过随机边界值概率,使用部分和有限的实验数据识别这些随机矢量值系数的后验概率模型lem。提出了两种方法来进行后验模型的识别。第一个基于经典贝叶斯方法的使用。第二种是从贝叶斯方法派生的新方法,该方法在高维方面效率更高。提出了一种应用,其中识别了数百万个随机系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号