首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains
【24h】

Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains

机译:不确定参数化域上边值问题求解的虚拟域方法和分离表示

获取原文
获取原文并翻译 | 示例

摘要

A tensor-based method is proposed for the solution of partial differential equations defined on uncertain parameterized domains. It provides an accurate solution which is explicit with respect to parameters defining the shape of the domain, thus allowing efficient a posteriori probabilistic or parametric analyses. In the proposed method, a fictitious domain approach is first adopted for the reformulation of the parametric problem on a fixed domain, yielding a weak formulation in a tensor product space (product of space functions and parametric functions). The paper is limited to the case of Neumann conditions on uncertain parts of the boundary. The Proper Generalized Decomposition method is then introduced for the construction of a tensor product approximation (separated representation) of the solution. It can be seen as an a priori model reduction technique which automatically captures reduced bases of space functions and parametric functions which are optimal for the representation of the solution. This tensor-based method is made computationally tractable by introducing separated representations of varia-tional forms, resulting from separated representations of the parameterized indicator function of the uncertain domain. For this purpose, a method is proposed for the construction of a constrained tensor product approximation which preserves positivity and therefore ensures well-posedness of problems associated with approximate indicator functions. Moreover, a regularization of the geometry is introduced to speed up the convergence of these tensor product approximations.
机译:针对不确定参数域上定义的偏微分方程,提出了一种基于张量的方法。它提供了一种精确的解决方案,对于定义域形状的参数而言是明确的,因此可以进行有效的后验概率或参数分析。在提出的方法中,首先采用虚拟域方法对固定域上的参数问题进行重新表述,从而在张量积空间(空间函数和参数函数的乘积)中产生弱公式。本文仅限于边界不确定部分上的Neumann条件的情况。然后引入适当的广义分解方法来构造解的张量积近似(分离表示)。可以将其视为一种先验模型简化技术,该技术可自动捕获对求解表示最优化的空间函数和参数函数的简化基数。通过引入不确定形式的参数化指标函数的独立表示,可以引入可变形式的独立表示,从而使这种基于张量的方法在计算上易于处理。为此,提出了一种构造受约束张量积近似的方法,该方法可以保持正数,并因此确保与近似指标函数相关的问题的适定性。此外,引入几何形状的正则化以加速这些张量积近似的收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号