首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Computational modeling of electrochemical coupling: A novel finite element approach towards ionic models for cardiac electrophysiology
【24h】

Computational modeling of electrochemical coupling: A novel finite element approach towards ionic models for cardiac electrophysiology

机译:电化学耦合的计算模型:一种针对心脏电生理学离子模型的新型有限元方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel, efficient finite element solution technique to simulate the electrochemical response of excitable cardiac tissue. We apply a global-local split in which the membrane potential of the electrical problem is introduced globally as a nodal degree of freedom, while the state variables of the chemical problem are treated locally as internal variables on the integration point level. This particular discretization is efficient and highly modular since different cardiac cell models can be incorporated in a straightforward way through only minor local modifications on the constitutive level. Here, we derive the underlying algorithmic framework for a recently proposed ionic model for human ventricular cardiomyo-cytes, and demonstrate its integration into an existing nonlinear finite element infrastructure. To ensure unconditional algorithmic stability, we apply an implicit backward Euler scheme to discretize the evolution equations for both the electrical potential and the chemical state variables in time. To increase robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative New-ton-Raphson scheme and illustrate the consistent linearization of the weak form of the excitation problem. This particular solution strategy allows us to apply an adaptive time stepping scheme, which automatically generates small time steps during the rapid upstroke, and large time steps during the plateau, the repolarization, and the resting phases. We demonstrate that solving an entire cardiac cycle for a real patient-specific geometry characterized through a transmembrane potential, four ion concentrations, thirteen gating variables, and fifteen ionic currents requires computation times of less than ten minutes on a standard desktop computer.
机译:我们提出了一种新颖,有效的有限元解决方案技术,以模拟可兴奋心脏组织的电化学响应。我们应用全局局部拆分,其中将电问题的膜电位作为节点自由度全局引入,而化学问题的状态变量在积分点级别上被局部视为内部变量。这种特定的离散化是有效且高度模块化的,因为可以通过仅在组成水平上的局部修改以直接的方式合并不同的心脏细胞模型。在这里,我们为最近提出的人心室心肌细胞离子模型推导了基础算法框架,并展示了其集成到现有非线性有限元基础结构中的方法。为了确保算法的无条件稳定性,我们应用了隐式后向Euler方案来离散化电位和化学状态变量的演化方程。为了提高鲁棒性并确保最佳二次收敛,我们建议采用增量迭代New-ton-Raphson方案,并说明激励问题的弱形式的一致线性化。这种特殊的解决方案策略使我们能够应用自适应时间步长方案,该方案在快速上冲程期间自动生成较小的时间步长,在平稳期,复极和静止期自动生成较大的时间步长。我们证明,要解决一个真正的患者特定几何结构(通过跨膜电势,四个离子浓度,十三个门控变量和十五个离子电流)来解决整个心脏周期,在标准台式计算机上需要不到十分钟的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号