首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods
【24h】

A locking-free finite element formulation and reduced models for geometrically exact Kirchhoff rods

机译:几何精确的基尔霍夫棒的无锁定有限元公式和简化模型

获取原文
获取原文并翻译 | 示例

摘要

In this work, we suggest a locking-free geometrically exact finite element formulation incorporating the modes of axial tension, torsion and bending of thin Kirchhoff beams with arbitrary initial curvatures. The proposed formulation has been designed in order to represent general load cases and three-dimensional problem settings in the geometrically nonlinear regime of large deformations. From this comprehensive theory, we not only derive a general beam model but also several reduced formulations, which deliver accurate solutions for special problem classes concerning the beam geometry and the external loads. The advantages of these reduced models arise for example in terms of simplified finite element formulations, less degrees of freedom per element and consequently a higher computational efficiency of the corresponding numerical models. A second core topic of this publication is the treatment of membrane locking, which is a locking phenomenon predominantly occurring in highly slender curved structures, thus, exactly in the prime field of application for Kirchhoff theories. In order to address the membrane locking effect, we will propose a new interpolation strategy for the axial strain field and compare this method with common approaches such as Assumed Natural Strains (ANS) or reduced integration. The effectiveness of this method as well as the consistency and accuracy of the general finite element formulation and the reduced beam models will be illustrated with selected numerical examples. (C) 2015 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们提出了一种无锁定的几何精确有限元公式,该公式包含了具有任意初始曲率的薄基尔霍夫梁的轴向拉伸,扭转和弯曲模式。设计提出的公式是为了表示大变形的几何非线性状态下的一般载荷工况和三维问题设置。从这个综合理论中,我们不仅可以得出一般的梁模型,还可以得出几种简化的公式,它们可以为涉及梁几何形状和外部载荷的特殊问题类别提供准确的解决方案。这些简化模型的优点例如体现在简化的有限元公式化,每个元素的自由度较小以及相应数值模型的计算效率较高的方面。该出版物的第二个核心主题是膜锁定的处理,这是一种锁定现象,主要发生在高度细长的弯曲结构中,因此恰好是基尔霍夫理论的主要应用领域。为了解决膜的锁定效应,我们将为轴向应变场提出一种新的插值策略,并将该方法与诸如假定自然应变(ANS)或简化积分的常见方法进行比较。将通过选择的数值示例来说明此方法的有效性以及通用有限元公式和简化梁模型的一致性和准确性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号