首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Large-scale robust topology optimization using multi-GPU systems
【24h】

Large-scale robust topology optimization using multi-GPU systems

机译:使用多GPU系统的大规模鲁棒拓扑优化

获取原文
获取原文并翻译 | 示例

摘要

Robust topology optimization of continuum structures is an intensive computational task due to the use of uncertainty propagation methods to estimate the statistical metrics within the topology optimization process. Such a computational problem is exacerbated for large finite element (FE) models in terms of memory consumption and processing time. For these reasons, the efficient resolution of robust topology optimization with large models remains an important computational challenge. This work aims to alleviate these computational constraints proposing a well-suited strategy for Graphics Processing Unit (GPU) computing. Such a proposal exploits the multilevel parallelism provided by multi-GPU systems for the parallel execution both within FE models and through uncertainty propagation methods. Task-level parallelism is used to concurrently evaluate the independent simulation models arising from a sparse grid stochastic collocation method. Data-level parallelism with different granularities is then exploited for the efficient resolution of each simulation model and the computation required by the topology optimization process. The resolution of the different calculations of robust topology optimization pipeline using multi-CPU systems are compared to the classically used multi-CPU implementation achieving significant speedups. (C) 2016 Elsevier B.V. All rights reserved,
机译:由于使用不确定性传播方法来估计拓扑优化过程中的统计指标,因此连续体结构的鲁棒拓扑优化是一项繁重的计算任务。对于大型有限元(FE)模型,在内存消耗和处理时间方面,这种计算问题更加严重。由于这些原因,使用大型模型对鲁棒拓扑优化进行有效解决仍然是一项重要的计算挑战。这项工作旨在减轻这些计算约束,为图形处理单元(GPU)计算提出了一种合适的策略。这样的提议利用了多GPU系统提供的多级并行性,以在有限元模型内以及通过不确定性传播方法进行并行执行。任务级并行性用于同时评估由稀疏网格随机配置方法产生的独立仿真模型。然后利用具有不同粒度的数据级并行性来有效解析每个仿真模型以及拓扑优化过程所需的计算。将使用多CPU系统进行的健壮的拓扑优化管道的不同计算的分辨率与传统使用的多CPU实现进行了比较,从而显着提高了速度。 (C)2016 Elsevier B.V.保留所有权利,

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号