首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes
【24h】

The multi-level hp-method for three-dimensional problems: Dynamically changing high-order mesh refinement with arbitrary hanging nodes

机译:用于解决三维问题的多级hp方法:使用任意悬挂节点动态更改高阶网格细化

获取原文
获取原文并翻译 | 示例

摘要

One main challenge of the hp-version of the finite element method is the high implementational complexity of the method resulting from the added need of handling hanging nodes appropriately. The multi-level hp-formulation recently introduced for two-dimensional applications aims at alleviating these difficulties without compromising the approximation quality. This is achieved by changing from the conventional refine-by-replacement approach to a refine-by-superposition idea. The current work shows that the multi-level hp-approach can be extended naturally to three-dimensional refinement without increasing the complexity of the rule set ensuring linear independence and compatibility of the shape functions. In this way, a three-dimensional hp-refinement scheme is formulated, in which hanging nodes are avoided by definition. This ease of complexity allows for a highly flexible discretization kernel featuring arbitrary irregular meshes and a continuous refinement and coarsening throughout the simulation runtime. Different numerical examples demonstrate that even in the presence of singularities this novel refinement scheme yields exponential convergence with respect to both, the number of unknowns and the computational time. It is further shown that the refinement scheme is able to capture complex solution features that demand for three-dimensional refinement patterns. The dynamic discretization properties of the approach are demonstrated by continuously refining and coarsening the mesh during the simulation runtime to keep the refinement zone local to a moving singularity. Finally, it is shown that the high approximation power of the multi-level hp-scheme also carries over to curved geometries common in engineering practice without a significant detrimental effect on the conditioning of the stiffness matrix. (C) 2016 Elsevier B.V. All rights reserved.
机译:有限元方法的hp版本的主要挑战是该方法的实现复杂性高,这是由于需要适当地处理悬挂节点而导致的。最近针对二维应用引入的多级hp公式旨在缓解这些困难而又不影响近似质量。这是通过从常规的逐个精炼方法变为逐个精炼思想来实现的。当前的工作表明,多级hp方法可以自然地扩展到三维细化,而不会增加规则集的复杂度,从而确保形状函数的线性独立性和兼容性。这样,制定了三维hp细化方案,其中通过定义避免了悬挂节点。这种简单的复杂性允许高度灵活的离散化内核,该内核具有任意不规则网格,并在整个仿真运行期间进行连续的细化和粗化。不同的数值示例表明,即使存在奇异点,这种新颖的细化方案在未知数和计算时间方面也会产生指数收敛。进一步表明,改进方案能够捕获需要三维精细化模式的复杂解决方案特征。通过在仿真运行期间连续细化和粗化网格以保持细化区域在运动奇异点附近,可以证明该方法的动态离散特性。最后,结果表明,多级hp方案的高逼近力也可以延续到工程实践中常见的弯曲几何形状,而对刚度矩阵的调节没有明显的不利影响。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号