首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A new framework for large strain electromechanics based on convex multi-variable strain energies: Variational formulation and material characterisation
【24h】

A new framework for large strain electromechanics based on convex multi-variable strain energies: Variational formulation and material characterisation

机译:基于凸多变量应变能的大应变机电新框架:变分公式和材料表征

获取原文
获取原文并翻译 | 示例

摘要

Following the recent work of Bonet et al. (2015), this paper postulates a new convex multi-variable variational framework for the analysis of Electro Active Polymers (EAPs) in the context of reversible nonlinear electro-elasticity. This extends the concept of polyconvexity (Ball, 1976) to strain energies which depend on non-strain based variables introducing other physical measures such as the electric displacement. Six key novelties are incorporated in this work. First, a new definition of the electro-mechanical internal energy is introduced expressed as a convex multi-variable function of a new extended set of electromechanical arguments. Crucially, this new definition of the internal energy enables the most accepted constitutive inequality, namely ellipticity, to be extended to the entire range of deformations and electric fields and, in addition, to incorporate the electro-mechanical energy of the vacuum, and hence that for ideal dielectric elastomers, as a degenerate case. Second, a new extended set of variables, work conjugate to those characterising the new definition of multi-variable convexity, is introduced in this paper. Third, both new sets of variables enable the definition of novel extended Hu-Washizu type of mixed variational principles which are presented in this paper for the first time in the context of nonlinear electro-elasticity. Fourth, some simple strategies to create appropriate convex multi-variable energy functionals (in terms of convex multi-variable invariants) by incorporating minor modifications to a priori non-convex multi-variable functionals are also presented. Fifth, a tensor cross product operation (de Boer, 1982) used in Bonet et al. (2015) to facilitate the algebra associated with the adjoint of the deformation gradient tensor is incorporated in the proposed variational electro-mechanical framework, leading to insightful representations of otherwise complex algebraic expressions. Finally, under a characteristic experimental setup in dielectric elastomers, the behaviour of a convex multi-variable constitutive model capturing some intrinsic nonlinear effects such as electrostriction, is numerically studied. (C) 2015 Elsevier B.V. All rights reserved.
机译:继Bonet等人的最新工作之后。 (2015年),本文提出了一个新的凸多变量变分框架,用于在可逆非线性电弹性情况下分析电活性聚合物(EAP)。这将多凸性(Ball,1976)的概念扩展到应变能,应变能依赖于基于非应变的变量,引入了其他物理量度,例如电位移。这项工作包含了六个关键的新颖性。首先,引入了机电内部能量的新定义,表示为新的一组机电参数扩展集的凸多变量函数。至关重要的是,这种对内部能量的新定义使得最被接受的本构不等式(即椭圆率)可以扩展到变形和电场的整个范围,此外,还可以合并真空的机电能,因此适用于理想的介电弹性体,如简并的情况。其次,本文介绍了一组新的扩展变量集,这些变量与表征多变量凸度新定义的那些变量共轭。第三,这两个新的变量集使得能够定义新颖的扩展的Hu-Washizu类型的混合变分原理,这是本文首次在非线性电弹性的背景下提出的。第四,还介绍了一些简单的策略,可以通过对先验非凸多变量函数进行较小的修改来创建适当的凸多变量能量函数(根据凸多变量不变量)。第五,Bonet等人使用的张量叉积运算(de Boer,1982)。 (2015年),以促进与变形梯度张量的伴随相关的代数纳入拟议的变分机电框架,导致深刻见解表示否则复杂的代数表达式。最后,在介电弹性体的特性实验设置下,对捕获了一些固有非线性效应(例如电致伸缩)的凸多变量本构模型的行为进行了数值研究。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号