首页> 外文学位 >Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials.
【24h】

Wireless and electromechanical approaches for strain sensing and crack detection in fiber reinforced cementitious materials.

机译:用于纤维增强水泥材料中应变和裂纹检测的无线和机电方法。

获取原文
获取原文并翻译 | 示例

摘要

High performance fiber reinforced cementitious composites (HPFRCC) are novel cement-based construction materials with excellent mechanical behaviors. Among those, high ductility and crack resisting are two of the most important features. As these new materials begin to be introduced into practice, there is a need to monitor the health and performance of structures and structural elements made of them. With current sensing technologies either incapable of accurately measuring cracking or too expensive to install, new sensing paradigms are needed. This thesis explores two novel approaches to sensing strain and cracking in HPFRCC structural elements: wireless sensors and the use of HPFRCC materials as their own sensor platform. First, wireless monitoring systems are explored because they are relatively low-cost and easy to install. An order of magnitude cheaper than conventional tethered sensors, wireless sensors can be installed in high density within a single structure. Illustration of a wireless monitoring system using a large number of wireless sensor nodes is provided using the Grove Street Bridge located in Ypsilanti, Michigan. The computational resources of the wireless sensor are leveraged to locally process response data recorded from an HPFRCC element. Damage index methods previously tailored for HPFRCC structural components are embedded into the wireless sensors for automated damage detection. The utility of locally processing response data at the sensor is validated using a cyclically loaded HPFRCC bridge pier.;While wireless sensors are capable of automated data interrogation, they do not fully quantify cracking in HPFRCC elements. To address this limitation, the inherent electromechanical properties of HPFRCC materials are harnessed. Specifically, HPFRCC materials are piezoresistive; in other words, their bulk resistivities change with strain. This work undertakes detail experimental evaluation of the electromechanical properties of one class of strain-hardening HPFRCC: engineered cementitious composites (ECC). First, the piezoresistive properties of ECC are quantified through two- and four-point probe methods. While strain can be accurately measured in the material's elastic regime, microcracking during strain hardening prevents correlations between resistivity and strain to be accurately made. Electrical impedance tomography (EIT) is proposed to map the spatial distribution of ECC bulk conductivity in two-dimensions using repeated electrical measurements taken at the specimen boundary. Hence, EIT conductivity maps can serve as a tool for measuring strain fields in ECC plate elements as well as for imaging cracking in fine detail. This material-level sensing approach holds tremendous promise for future structural health monitoring applications. The EIT sensing approach can also be applied to any semi-conductive material to map conductivity. The universality of the approach is illustrated using a carbon nanotube composite material as a sensing skin, or applique, for structural health monitoring.
机译:高性能纤维增强水泥基复合材料(HPFRCC)是新型的水泥基建筑材料,具有出色的机械性能。其中,高延展性和抗裂性是两个最重要的特征。随着这些新材料开始被引入实践,需要监视由它们构成的结构和结构元件的健康和性能。由于当前的传感技术无法精确测量裂纹或安装成本太高,因此需要新的传感范式。本文探索了两种新颖的方法来检测HPFRCC结构元件中的应变和裂纹:无线传感器以及使用HPFRCC材料作为其自己的传感器平台。首先,研究无线监控系统,因为它们成本相对较低且易于安装。无线传感器可以比传统的系留传感器便宜一个数量级,可以在单个结构中以高密度安装。使用位于密歇根州伊普西兰蒂的格罗夫街大桥提供了使用大量无线传感器节点的无线监控系统的图示。利用无线传感器的计算资源来本地处理从HPFRCC元素记录的响应数据。先前针对HPFRCC结构组件量身定制的损坏指数方法被嵌入到无线传感器中,用于自动损坏检测。使用循环加载的HPFRCC桥墩验证了在传感器处本地处理响应数据的实用性。虽然无线传感器能够自动进行数据查询,但它们无法完全量化HPFRCC元件中的裂纹。为了解决此限制,利用了HPFRCC材料的固有机电性能。具体地说,HPFRCC材料是压阻的;换句话说,它们的体电阻率随应变而变化。这项工作对一类应变硬化HPFRCC:工程水泥复合材料(ECC)的机电性能进行了详细的实验评估。首先,通过两点和四点探针法对ECC的压阻特性进行了量化。尽管可以在材料的弹性状态下精确测量应变,但是应变硬化过程中的微裂纹会阻止电阻率与应变之间的关系得到精确的确定。提出了电阻抗断层扫描(EIT),以在样品边界处进行重复的电测量来绘制二维ECC体电导率的空间分布。因此,EIT电导率图可以用作测量ECC板元件中的应变场以及对裂纹进行精细成像的工具。这种材料水平的传感方法在未来的结构健康监测应用中具有广阔的前景。 EIT感应方法也可以应用于任何半导体材料以绘制导电率。使用碳纳米管复合材料作为用于结构健康监测的传感皮肤或贴花,说明了该方法的普遍性。

著录项

  • 作者

    Hou, Tsung-Chin.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号