首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity
【24h】

A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity

机译:用于大应变计算固体动力学的一阶双曲框架。第二部分:总拉格朗日可压缩,几乎不可压缩和真正不可压缩的弹性

获取原文
获取原文并翻译 | 示例

摘要

In Part I of this series, Bonet et al. (2015) introduced a new computational framework for the analysis of large strain isothermal fast solid dynamics, where a mixed set of Total Lagrangian conservation laws was presented in terms of the linear momentum and an extended set of strain measures, namely the deformation gradient, its co-factor and its Jacobian. The main aim of this paper is to expand this formulation to the case of nearly incompressible and truly incompressible materials. The paper is further enhanced with three key novelties. First, the use of polyconvex nearly incompressible strain energy functionals enables the definition of generalised convex entropy functions and associated entropy fluxes. Two variants of the same formulation can then be obtained, namely, conservation-based and entropy-based, depending on the unknowns of the system. Crucially, the study of the eigenvalue structure of the system is carried out in order to demonstrate its hyperbolicity and, thus, obtain the correct time step bounds for explicit time integrators. Second, the development of a stabilised Petrov-Galerkin framework is presented for both systems of hyperbolic equations, that is, when expressed in terms of either conservation or entropy variables. Third, an adapted fractional step method, built upon the work presented in Gil et al. (2014), is presented to extend the range of applications towards the incompressibility limit. Finally, a series of numerical examples are presented in order to assess the applicability and robustness of the proposed formulation. The overall scheme shows excellent behaviour in compressible, nearly incompressible and truly incompressible scenarios, yielding equal order of convergence for velocities and stresses. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本系列的第一部分中,Bonet等人。 (2015年)引入了一个新的计算框架,用于分析大应变等温快速固体动力学,其中根据线性动量和一组扩展的应变量度(即变形梯度,应变梯度)提出了混合的总拉格朗日守恒律。辅助因子及其雅可比矩阵。本文的主要目的是将这种配方扩展到几乎不可压缩和真正不可压缩的材料的情况。通过三个关键的新颖性进一步完善了本文。首先,使用多凸几乎不可压缩的应变能函数可以定义广义凸熵函数和相关的熵通量。然后,根据系统的未知数,可以获得相同配方的两个变体,即基于保守性和基于熵的。至关重要的是,对系统的特征值结构进行了研究,以证明其双曲性,从而为显式时间积分器获得正确的时间步长边界。其次,提出了两个双曲方程组的稳定Petrov-Galerkin框架的发展,也就是说,用守恒或熵变量表示。第三,一种改进的分数步法,建立在Gil等人的工作中。 (2014年),提出将应用范围扩展到不可压缩极限。最后,给出了一系列数值示例,以评估所提出配方的适用性和鲁棒性。整体方案在可压缩,几乎不可压缩和真正不可压缩的场景中显示出出色的性能,从而在速度和应力方面产生相等的收敛阶数。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号