首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Compatible-strain mixed finite element methods for 3D compressible and incompressible nonlinear elasticity
【24h】

Compatible-strain mixed finite element methods for 3D compressible and incompressible nonlinear elasticity

机译:3D可压缩和不可压缩非线性弹性的兼容应变混合有限元方法

获取原文
获取原文并翻译 | 示例

摘要

A new family of mixed finite element methods - compatible-strain mixed finite element methods (CSFEMs) - are introduced for three-dimensional compressible and incompressible nonlinear elasticity. A Hu-Washizu-type functional is extremized in order to obtain a mixed formulation for nonlinear elasticity. The independent fields of the mixed formulations are the displacement, the displacement gradient, and the first Piola-Kirchhoff stress. A pressure-like field is also introduced in the case of incompressible elasticity. We define the displacement in H-1, the displacement gradient in H(curl), the stress in H(div), and a pressure-like field in L-2. In this setting, for improving the stability of the proposed finite element methods without compromising their consistency, we consider some stabilizing terms in the Hu-Washizu-type functional that vanish at its critical points. Using a conforming interpolation, the solution and the test spaces are approximated with some piecewise polynomial subspaces of them. In three dimensions, this requires using the Nedelec edge elements for the displacement gradient and the Nedelec face elements for the stress. This approach results in mixed finite element methods that satisfy the Hadamard jump condition and the continuity of traction on all the internal faces of the mesh. This, in particular, makes CSFEMs quite efficient for modeling heterogeneous solids. We assess the performance of CSFEMs by solving several numerical examples, and demonstrate their good performance for bending problems, for bodies with complex geometries, and in the near-incompressible and the incompressible regimes. Using CSFEMs, one can capture very large strains and accurately approximate stresses and the pressure field. Moreover, in our numerical examples, we do not observe any numerical artifacts such as checkerboarding of pressure, hourglass instability, or locking. (C) 2019 Elsevier B.V. All rights reserved.
机译:引入了一个新的混合有限元方法系列-兼容应变混合有限元方法(CSFEM)-用于三维可压缩和不可压缩的非线性弹性。为了获得非线性弹性的混合配方,对Hu-Washizu型功能进行了极端处理。混合配方的独立字段是位移,位移梯度和第一个Piola-Kirchhoff应力。在不可压缩的弹性的情况下,还会引入类似压力的场。我们在H-1中定义位移,在H(curl)中定义位移梯度,在H(div)中定义应力,并在L-2中定义类似压力的场。在这种情况下,为了提高所提出的有限元方法的稳定性而又不损害其一致性,我们考虑了Hu-Washizu型泛函的一些稳定项,这些稳定项在关键点处消失了。使用一致插值,解和测试空间使用它们的一些分段多项式子空间来近似。在三个维度上,这需要将Nedelec边缘元素用于位移梯度,而将Nedelec面元素用于应力。这种方法产生的混合有限元方法满足Hadamard跳变条件并满足网格所有内表面上的牵引力连续性要求。尤其是,这使得CSFEM在建模异质实体方面非常有效。我们通过解决几个数值示例来评估CSFEM的性能,并证明它们在弯曲问题,具有复杂几何形状的物体以及接近不可压缩和不可压缩状态下的良好性能。使用CSFEM,可以捕获非常大的应变,并准确估计应力和压力场。此外,在我们的数值示例中,我们没有观察到任何数值假象,例如压力棋盘格,沙漏不稳定性或锁定。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号