首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Low rank tensor methods in Galerkin-based isogeometric analysis
【24h】

Low rank tensor methods in Galerkin-based isogeometric analysis

机译:基于Galerkin的等几何分析中的低秩张量方法

获取原文
获取原文并翻译 | 示例

摘要

The global (patch-wise) geometry map, which describes the computational domain, is a new feature in isogeometric analysis. This map has a global tensor structure, inherited from the parametric spline geometry representation. The use of this global structure in the discretization of partial differential equations may be regarded as a drawback at first glance, as opposed to the purely local nature of (high-order) classical finite elements. In this work we demonstrate that it is possible to exploit the regularity of this structure and to identify the great potential for the efficient implementation of isogeometric discretizations. First, we formulate tensor-product B-spline bases as well as the corresponding mass and stiffness matrices as tensors in order to reveal their intrinsic structure. Second, we derive an algorithm for the separation of variables in the integrands arising in the discretization. This is possible by means of low rank approximation of the integral kernels. We arrive at a compact, separated representation of the integrals. The separated form implies an expression of Galerkin matrices as Kronecker products of matrix factors with small dimensions. This representation is very appealing, due to the reduction in both memory consumption and computation times. Our benchmarks, performed using the C++ library G+Smo, demonstrate that the use of tensor methods in isogeometric analysis possesses significant advantages. (C) 2016 Elsevier B.V. All rights reserved.
机译:全局(逐点)几何图谱描述了计算域,是等几何分析中的新功能。该贴图具有全局张量结构,该结构从参数样条曲线几何表示形式继承而来。乍看之下,在偏微分方程离散化中使用这种全局结构可能被视为一个缺点,这与(高阶)经典有限元的纯局部性质相反。在这项工作中,我们证明了可以利用这种结构的规律性并确定有效实施等几何离散化的巨大潜力。首先,我们制定张量积B样条基以及相应的质量和刚度矩阵作为张量,以揭示其固有结构。其次,我们推导了一种算法,用于分离离散化过程中被积物中的变量。这可以通过积分内核的低秩逼近来实现。我们得到了一个紧凑的,分离的积分表示。分离的形式表示Galerkin矩阵作为小尺寸矩阵因子的Kronecker积的表示。由于减少了内存消耗和计算时间,所以这种表示非常吸引人。我们使用C ++库G + Smo执行的基准测试表明,在等几何分析中使用张量方法具有明显的优势。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号