首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient stochastic framework to propagate the effect of the random solid-pore geometry of porous media on the pore-scale flow
【24h】

An efficient stochastic framework to propagate the effect of the random solid-pore geometry of porous media on the pore-scale flow

机译:一种有效的随机框架,可传播多孔介质随机固孔几何结构对孔尺度流动的影响

获取原文
获取原文并翻译 | 示例

摘要

Simulating the pore-scale flow-field past porous media samples is a computationally expensive exercise. Uncertainty quantification of such systems can turn out to be a real challenge, especially by employing the available spectral approaches such as the polynomial chaos expansion (PCE) technique and its variants. The present study addresses this problem by combining the strengths of a sampling based method and a spectral characterization technique. This novel approach integrates Monte Carlo Simulations (MCS) and Karhunen-Loeve (K-L) expansion techniques in order to create a framework for the modelling and reconstruction of the output fields of large order complex systems such as the porous media flow. A pore-scale modelling of flow through porous media samples, by simulating the incompressible Navier-Stokes equation in the pore spaces by employing the Lattice Boltzmann method has been taken up in the present study. The modelling of the input randomness also has an element of novelty in the present work as it directly captures the random solid-pore arrangement of the media geometry instead of any macro properties. The input random geometries are created digitally using limited statistics of an appropriate discrete valued random process. The resulting, process is weakly correlated and needs a very large number of input random variables to capture its higher frequency content. Such large random dimensional problems cannot be practically solved using popular spectral tools like the PCE. The proposed integrated MCS-KL approach has been utilized successfully in the present work to propagate their effect on the pore-scale velocity field. Further, the K-L step provides an efficient means for reconstructing physically realistic samples of the chosen output whose statistics match the target statistics well. This is a significant time saver as it effectively bypasses the need of fresh flow-field simulations through a complex large order system such as the present one. (C) 2016 Elsevier B.V. All rights reserved.
机译:模拟经过多孔介质样品的孔尺度流场是计算上昂贵的工作。尤其是通过采用可用的频谱方法(例如多项式混沌扩展(PCE)技术及其变体),对此类系统的不确定性量化可能会成为真正的挑战。本研究通过结合基于采样的方法和频谱表征技术的优势来解决此问题。这种新颖的方法集成了蒙特卡洛模拟(MCS)和Karhunen-Loeve(K-L)扩展技术,从而为大型复杂系统(例如多孔介质流)的输出场的建模和重构创建了框架。通过采用莱迪思·玻尔兹曼方法模拟孔隙空间中不可压缩的Navier-Stokes方程,研究了流经多孔介质样品的孔隙尺度模型。输入随机性的建模在当前工作中也具有新颖性,因为它直接捕获了介质几何形状的随机实心孔排列,而不是任何宏观特性。使用适当的离散值随机过程的有限统计信息,以数字方式创建输入随机几何。由此产生的过程之间的相关性很弱,需要大量的输入随机变量来捕获其较高的频率含量。使用诸如PCE之类的流行频谱工具无法实际解决这样大的随机尺寸问题。所提出的集成式MCS-KL方法已成功用于当前工作中,以传播其对孔尺度速度场的影响。此外,K-L步骤提供了一种有效的方法,可用于重建所选输出的物理现实样本,这些样本的统计信息与目标统计信息非常匹配。这可以节省大量时间,因为它可以通过复杂的大阶系统(例如当前系统)有效地绕过对新鲜流场模拟的需求。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号