...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Matrix-free weighted quadrature for a computationally efficient isogeometric k-method
【24h】

Matrix-free weighted quadrature for a computationally efficient isogeometric k-method

机译:无矩阵加权正交求计算有效的等几何k方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The k-method is the isogeometric method based on splines (or NURBS, etc.) with maximum regularity. When implemented following the paradigms of classical finite element methods, the computational resources required by the k-method are prohibitive even for moderate degree. In order to address this issue, we propose a matrix-free strategy combined with weighted quadrature, which is an ad-hoc strategy to compute the integrals of the Galerkin system. Matrix-free weighted quadrature (MF-WQ) speeds up matrix operations, and, perhaps even more important, greatly reduces memory consumption. Our strategy also requires an efficient preconditioner for the linear system iterative solver. In this work we deal with an elliptic model problem, and adopt a preconditioner based on the Fast Diagonalization method, an old idea to solve Sylvester-like equations. Our numerical tests show that the isogeometric solver based on MF-WQ is faster than standard approaches (where the main cost is the matrix formation by standard Gaussian quadrature) even for low degree. But the main achievement is that, with MF-WQ, the k-method gets orders of magnitude faster by increasing the degree, given a target accuracy. Therefore, we are able to show the superiority, in terms of computational efficiency, of the high-degree k-method with respect to low-degree isogeometric discretizations. What we present here is applicable to more complex and realistic differential problems, but its effectiveness will depend on the preconditioner stage, which is as always problem-dependent. This situation is typical of modern high-order methods: the overall performance is mainly related to the quality of the preconditioner. (C) 2018 Elsevier B.V. All rights reserved.
机译:k方法是基于样条曲线(或NURBS等)的规则性最大的等几何方法。当遵循经典有限元方法的范例来实现时,即使中等程度,k方法所需的计算资源也是禁止的。为了解决这个问题,我们提出了结合加权正交的无矩阵策略,这是一种用于计算Galerkin系统积分的临时策略。无矩阵加权正交(MF-WQ)加快了矩阵运算的速度,并且也许甚至更为重要的是,它大大减少了内存消耗。我们的策略还需要线性系统迭代求解器的高效预处理器。在这项工作中,我们处理一个椭圆模型问题,并采用基于快速对角化方法的预处理器,这是解决类Sylvester方程的旧思想。我们的数值测试表明,即使在低度条件下,基于MF-WQ的等几何求解器也比标准方法(主要成本是通过标准高斯求积法形成矩阵)要快。但是主要的成就是,在达到目标精度的情况下,使用MF-WQ,通过提高度数,k方法的速度提高了几个数量级。因此,我们能够在计算效率方面显示出相对于低等距几何离散化而言,高阶k方法的优越性。我们在这里介绍的内容适用于更复杂和现实的微分问题,但其有效性将取决于预处理器阶段,而预处理器阶段始终取决于问题。这种情况是现代高阶方法的典型情况:总体性能主要与预处理器的质量有关。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号