首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Fast formation of isogeometric Galerkin matrices by weighted quadrature
【24h】

Fast formation of isogeometric Galerkin matrices by weighted quadrature

机译:通过加权求积快速形成等几何Galerkin矩阵

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose an algorithm for the formation of matrices of isogeometric Galerkin methods. The algorithm is based on three ideas. The first is that we perform the external loop over the rows of the matrix. The second is that we calculate the row entries by weighted quadrature. The third is that we exploit the (local) tensor product structure of the basis functions. While all ingredients have a fundamental role for computational efficiency, the major conceptual change of paradigm with respect to the standard implementation is the idea of using weighted quadrature: the test function is incorporated in the integration weight while the trial function, the geometry parametrization and the PDEs coefficients form the integrand function. This approach is very effective in reducing the computational cost, while maintaining the optimal order of approximation of the method. Analysis of the cost is confirmed by numerical testing, where we show that, for p large enough, the time required by the floating point operations is less than the time spent in unavoidable memory operations (the sparse matrix allocation and memory write). The proposed algorithm allows significant time saving when assembling isogeometric Galerkin matrices for all the degrees of the test spline space and paves the way for a use of high-degree k-refinement in isogeometric analysis. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了等几何Galerkin方法矩阵的形成算法。该算法基于三个想法。首先是我们对矩阵的行执行外部循环。第二个是我们通过加权正交计算行条目。第三是我们利用基本函数的(局部)张量积结构。尽管所有要素对计算效率都起着基本作用,但在标准实现方面,范式的主要概念变化是使用加权正交的思想:将测试函数合并到积分权重中,而将试验函数,几何参数化和PDEs系数形成被积函数。这种方法在降低计算成本的同时非常有效,同时保持了该方法的最佳近似顺序。通过数值测试证实了对成本的分析,其中我们证明,对于足够大的p,浮点操作所需的时间少于在不可避免的内存操作(稀疏矩阵分配和内存写入)中花费的时间。拟议的算法可以为测试样条空间的所有度数组装等几何Galerkin矩阵时节省大量时间,并为在等几何分析中使用高阶k精细化铺平了道路。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号