首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements
【24h】

Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements

机译:异常壳壳分析的Galerkin制剂:用Greville Quadratures和高阶元素缓解锁定

获取原文

摘要

We propose new quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin shell elements and nine in-plane points for Kirchhoff-Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree p of the elements. The quadrature points are Greville abscissae associated with pth-order B-spline basis functions whose continuities depend on the specific Galerkin formulations, and the quadrature weights are calculated by solving a linear moment fitting problem in each parametric direction. The proposed shell element formulations are shown through numerical studies to be rank sufficient and to be free of spurious modes. The studies reveal comparable accuracy, in terms of both displacement and stress, compared with fully integrated spline-based shell elements, while at the same time reducing storage and computational cost associated with forming element stiffness and mass matrices and force vectors. The high accuracy with low computational cost makes the proposed quadratures along with higher-order spline bases, in particular polynomial orders, p = 5 and 6, good choices for alleviating membrane and shear locking in shells. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们提出了新的正交方案,即渐近地只需要四个在B-Qually-Love壳元件的Reissner-Mindlin壳元素和九个面内点,与基于B样和NURBS为基础测量壳分析,与多项式程度相似元素。正交点是与Pth-阶B样条基函数相关的Greville横坐标,其连续性取决于特定的Galerkin制剂,并且通过在每个参数方向上求解线性矩拟合问题来计算正交重量。通过数值研究显示所提出的壳元素制剂,以获得足够的秩序并且不含杂散模式。与完全集成的样条壳元件相比,这些研究揭示了比较的位移和应力方面的可比精度,同时减少与形成元件刚度和质量矩阵和力矢量相关的存储和计算成本。具有低计算成本的高精度使得提出的四曲面以及高阶样条碱基,特别是多项式订单,P = 5和6,用于缓解膜和剪切锁定的良好选择。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号