首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Efficient quadrature rules for subdivision surfaces in isogeometric analysis
【24h】

Efficient quadrature rules for subdivision surfaces in isogeometric analysis

机译:等几何分析中细分曲面的有效正交规则

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new approach to numerical quadrature on geometries defined by subdivision surfaces based on quad meshes in the context of isogeometric analysis. Starting with a sparse control mesh, the subdivision process generates a sequence of finer and finer quad meshes that in the limit defines a smooth subdivision surface, which can be of any manifold topology. Traditional approaches to quadrature on such surfaces rely on per-quad integration, which is inefficient and typically also inaccurate near vertices where other than four quads meet. Instead, we explore the space of possible groupings of quads and identify the optimal macro-quads in terms of the number of quadrature points needed. We show that macro-quads consisting of quads from one or several consecutive levels of subdivision considerably reduce the cost of numerical integration. Our rules possess a tensor product structure and the underlying univariate rules are Gaussian, i.e., they require the minimum possible number of integration points in both univariate directions.
机译:在等几何分析的背景下,我们引入了一种新方法,可以对由基于四边形网格的细分曲面定义的几何进行数值求积。从稀疏的控制网格开始,细分过程会生成一系列越来越细的四边形网格,这些网格在极限内定义了平滑的细分表面,该曲面可以是任何歧管拓扑。在此类表面上进行正交的传统方法依赖于四级积分,这种积分效率低下,而且在除四个四方形以外的其他顶点附近通常也不准确。取而代之的是,我们探索四边形可能分组的空间,并根据所需的正交点数确定最佳的宏四边形。我们表明,由一个或几个连续的细分级别的四边形组成的宏四边形大大降低了数值积分的成本。我们的规则具有张量积结构,而基本的单变量规则是高斯的,即它们要求在两个单变量方向上的积分点的数量尽可能少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号