首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture
【24h】

Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture

机译:用于在制造过程中建模复合工具系统的热化学固化过程的物理知识神经网络

获取原文
获取原文并翻译 | 示例

摘要

We present a Physics-Informed Neural Network (PINN) to simulate the thermochemical evolution of a composite material on a tool undergoing cure in an autoclave. In particular, we solve the governing coupled system of differential equations - including conductive heat transfer and resin cure kinetics - by optimizing the parameters of a deep neural network (DNN) using a physics-based loss function. To account for the vastly different behaviour of thermal conduction and resin cure, we design a PINN consisting of two disconnected subnetworks, and develop a sequential training algorithm that mitigates instability present in traditional training methods. Further, we incorporate explicit discontinuities into the DNN at the composite-tool interface and enforce known physical behaviour directly in the loss function to improve the solution near the interface. We train the PINN with a technique that automatically adapts the weights on the loss terms corresponding to PDE, boundary, interface, and initial conditions. Finally, we demonstrate that one can include problem parameters as an input to the model - resulting in a surrogate that provides real-time simulation for a range of problem settings - and that one can use transfer learning to significantly reduce the training time for problem settings similar to that of an initial trained model. The performance of the proposed PINN is demonstrated in multiple scenarios with different material thicknesses and thermal boundary conditions. (C) 2021 Elsevier B.V. All rights reserved.
机译:我们提出了一种物理信息的神经网络(PINN),用于模拟在高压釜中进行固化的工具上的复合材料的热化学演变。特别地,我们解决了差分方程的控制耦合系统 - 包括使用基于物理的损耗功能优化深神经网络(DNN)的参数来解决导电传热和树脂固化动力学。为了考虑热传导和树脂固化的巨大行为,我们设计由两个断开的子网组成的Pinn,并开发一个连续的训练算法,这些训练算法减轻了传统训练方法中存在的不稳定性。此外,我们将明确的不连续性在复合工具接口处的DNN中并直接在损耗功能中强制执行已知的物理行为,以改善界面附近的解决方案。我们用一种技术训练PINN,该技术可以自动适应对应于PDE,边界,接口和初始条件的丢失术语的权重。最后,我们证明了一个人可以将问题参数包含为模型的输入 - 导致代理提供了一系列问题设置的实时模拟 - 并且可以使用传输学习来显着减少问题设置的培训时间类似于初始训练模型的模型。所提出的Pinn的性能在多种情况下进行了说明,具有不同的材料厚度和热边界条件。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号