首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An implicit non-ordinary state-based peridynamics with stabilised correspondence material model for finite deformation analysis
【24h】

An implicit non-ordinary state-based peridynamics with stabilised correspondence material model for finite deformation analysis

机译:具有有限变形分析的稳定对应材料模型的隐含非普通状态性逆动室

获取原文
获取原文并翻译 | 示例

摘要

This paper is devoted to the development of a stabilised implicit non-ordinary state-based peridynamics approach. We propose a geometrically nonlinear implicit approach focusing on quasi-static analyses. Since the construction of the Jacobian matrix is the most time-consuming step in conducting this nonlinear analysis, we formulate an analytical expression based on the equation of motion of non-ordinary state-based peridynamics to ensure optimum convergence of the global residual force. The implicit formulation can adopt fairly large time increments, making it a good choice for analyses of finite deformation. Another important extension presented in this paper is the modification of the correspondence material model to remove zero-energy mode instabilities and reduce the spurious oscillations, as proposed by Silling (2017). The derivative of the additional stabilisation term with respect to displacement is included in the formulation of the Jacobian for the first time. Computational examples of 2D finite deformation problems with a stabilised correspondence model are presented. We assess the effectiveness of different values of the stabilisation parameter, G in terms of the particles' spacings and horizon sizes for different problems. This allows the non-ordinary state-based peridynamics approach to model material behaviour with greater accuracy where correspondence materials have previously failed due to instabilities. In this paper, a damage model is also proposed, which provides for the first time an implicit approach for the static solution of crack propagation problems for non-ordinary state-based peridynamics. This paper lays the groundwork for non-ordinary state-based peridynamics to be used for a much greater variety of solid mechanics problems than is currently possible and at the same time satisfying the stability condition. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文致力于开发稳定的隐含非普通国家的白动力学方法。我们提出了一种重点上的几何非线性隐式方法,专注于准静态分析。由于Jacobian基质的构建是进行该非线性分析的最耗时的步骤,因此我们基于非普通状态性表现的运动方程式的分析表达,以确保全局残余力的最佳收敛性。隐性配方可以采用相当大的时间增量,使其成为分析有限变形的良好选择。本文提出的另一个重要扩展是修改了对应材料模型以消除零能量模式不稳定性并降低杂散振荡,如silling(2017)所提出的。额外稳定期相对于位移的衍生物是第一次配制雅可比的制剂。介绍了稳定对应模型的2D有限变形问题的计算示例。我们评估稳定参数的不同价值,G在颗粒间距和地平线尺寸方面的不同问题的有效性。这允许非普通状态的白动力学方法以更高的准确度模拟材料行为,其中对应材料由于不稳定性而先前失败。在本文中,还提出了一种损伤模型,该损坏模型提供了对非普通状态性表现的裂纹传播问题静态解决方案的第一次隐含方法。本文为非普通状态性诙谐,以用于更大种类的固体力学问题,奠定了比目前可能的,并且同时满足稳定性条件的基础。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号