首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning
【24h】

An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning

机译:基于深度学习的单二维图像的多孔介质的端到端三维重建框架

获取原文
获取原文并翻译 | 示例

摘要

Stochastically reconstructing a three-dimensional (3D) structure of porous media from a given two-dimensional (2D) image is an outstanding problem. For such problem, despite that the big progress has been made on reconstruction methods such as optimization-based and multi-point statistics-based algorithms, however, the reconstruction of topologically complex or non-stationary materials is still not well addressed. Besides, the reconstruction efficiency is another remarkable challenge, and a 128(3) reconstruction using these methods generally requires several hours. In this paper, to overcome these problems, we propose a general end-to-end deep learning-based 3D reconstruction framework. Specially, the mapping (function) between a 2D slice and its 3D structure is first learned by a neural network. Then, the 3D reconstruction of a new 2D image using this mapping is instantaneous. For a 128(3) reconstruction, our method only requires 0.2s, thus achieving a 3.6 x 10(4) speedup factor compared with the classical methods. Besides, to yield diverse 3D structures for the same 2D input, a Gaussian noise is introduced into the network. Our approach is tested on two statistically isotropic materials and a non-stationary porous material, and evaluated in terms of both visual and quantitative comparisons. Experimental results indicate that the proposed method is accurate, fast, and stable. The proposed framework also enables that theoretically an arbitrary number of constraints can be incorporated to further improve the reconstruction accuracy. (C) 2020 Elsevier B.V. All rights reserved.
机译:从给定二维(2D)图像的多孔介质的三维(3D)结构是一个突出的问题。对于此类问题,尽管对重建方法进行了大进展,但是基于优化和基于多点统计的算法等,拓扑复杂或非静止材料的重建仍然没有很好地解决。此外,重建效率是另一个显着的挑战,使用这些方法的128(3)重建一般需要几个小时。在本文中,为了克服这些问题,我们提出了一般的基于端到端的深度学习的3D重建框架。特别地,首先由神经网络学习2D切片和其3D结构之间的映射(功能)。然后,使用该映射的新2D图像的3D重建是瞬时的。对于128(3)重建,我们的方法仅需要0.2s,从而实现3.6×10(4)加速因子与经典方法相比。此外,为了产生相同的2D输入的多样化3D结构,将高斯噪声引入网络中。我们的方法在两种统计各向同性材料和非平稳多孔材料上进行测试,并根据视觉和定量比较评估。实验结果表明,该方法准确,快速,稳定。所提出的框架还可以使理论上可以纳入任意数量的约束,以进一步提高重建精度。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Computer Methods in Applied Mechanics and Engineering》 |2020年第15期|113043.1-113043.20|共20页
  • 作者单位

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610065 Peoples R China|Minist Educ Key Lab Wireless Power Transmiss Chengdu 610065 Peoples R China;

    CNPC Logging Ltd Tech Ctr Xian 710077 Peoples R China|CNPC Well Logging Key Lab Xian 710077 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610065 Peoples R China|Minist Educ Key Lab Wireless Power Transmiss Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610065 Peoples R China;

    Sichuan Univ Coll Elect & Informat Engn Chengdu 610065 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Porous media; 3D microstructure reconstruction; Deep learning; Conditional generative adversarial network (CGAN);

    机译:多孔介质;3D微观结构重建;深入学习;有条件的生成对抗网络(Cgan);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号