首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Finite element approximation of finite deformation dislocation mechanics
【24h】

Finite element approximation of finite deformation dislocation mechanics

机译:有限变形位错力学的有限元近似

获取原文
获取原文并翻译 | 示例

摘要

We develop and demonstrate the first general computational tool for finite deformation static and dynamic dislocation mechanics. A finite element formulation of finite deformation (Mesoscale) Field Dislocation Mechanics theory is presented. The model is a minimal enhancement of classical crystal/J2 plasticity that fundamentally accounts for polar/excess dislocations at the mesoscale. It has the ability to compute the static and dynamic finite deformation stress fields of arbitrary (evolving) dislocation distributions in finite bodies of arbitrary shape and elastic anisotropy under general boundary conditions. This capability is used to present a comparison of the static stress fields, at finite and small deformations, for screw and edge dislocations, revealing heretofore unexpected differences. The computational framework is verified against the sharply contrasting predictions of geometrically linear and nonlinear theories for the stress field of a spatially homogeneous dislocation distribution in the body, as well as against other exact results of the theory. Verification tests of the time-dependent numerics are also presented. Size effects in crystal and isotropic versions of the theory are shown to be a natural consequence of the model and are validated against available experimental data. With inertial effects incorporated, the development of an (asymmetric) propagating Mach cone is demonstrated in the finite deformation theory when a dislocation moves at speeds greater than the linear elastic shear wave speed of the material. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们开发并展示有限变形静态和动态位错力学的第一一般计算工具。提出了有限变形(Messcale)场位错理论的有限元制剂。该模型是古典晶体/ J2可塑性的最小增强,从根本上占MESSCLE的极性/过量脱位。在一般边界条件下,它具有计算任意形状和弹性各向异性的有限体的任意(进化)位错分布的静态和动态有限变形应力场。这种能力用于呈现静态应力场,有限和小变形的比较,用于螺钉和边缘位错,揭示迄今为止意外的差异。验证计算框架,其针对在体内空间均匀位错分布的空间均匀位错分布的应力场的急剧对比预测,以及理论的其他精确结果。还提出了时间依赖性编程的验证测试。该理论的晶体和各向同性版本中的尺寸效应被显示为模型的自然后果,并针对可用的实验数据验证。通过掺入惯性效果,当位错在速度大于材料的线性弹性剪切速度的速度时,在有限的变形理论中,在有限的变形理论中进行了发展的发展。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号