首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Iterative solution of Helmholtz problem with high-order isogeometric analysis and finite element method at mid-range frequencies
【24h】

Iterative solution of Helmholtz problem with high-order isogeometric analysis and finite element method at mid-range frequencies

机译:高阶ISOGEMETIC分析和中档频率有限元法的舵机迭代解

获取原文
获取原文并翻译 | 示例

摘要

Solving wave problems with isogeometric analysis has attracted a significant attention in the past few years. It is well known that keeping a fixed number of degrees of freedom per wavelength leads to an increased error as higher wavenumbers are considered. This behaviour often cited as the pollution error, improves significantly with isogeometric analysis when compared to the conventional finite element method. The improvement in handling pollution along with the ability to represent exact geometries has been the main reasons behind the attention that isogeometric analysis has received. Furthermore, using high order elements also presents major advantages over low order elements for this range of frequencies. However, it remains to be studied how iterative linear solvers, often necessary for solving high frequency wave problems, perform when using isogeometric analysis compared to the finite element method especially at high polynomial orders. This paper is one of the first studies in this direction.In this work we investigate the Generalised Minimal Residual method, a standard Krylov subspace iterative technique, for solving the linear system resulting form isogeometric analysis. Furthermore, we look into the use of some recently proposed preconditioners for Helmholtz problem, such as shifted Laplace or ILU with a complex shift preconditioners and how they perform with high order isogeometric analysis and finite element method. In general the results show improvement when using isogeometric analysis in terms of the number of iterations required for convergence compared to the finite element method for both preconditioned and non-preconditioned linear systems. We use eigenvalue spectra to understand this improvement. (C) 2020 Elsevier B.V. All rights reserved.
机译:在过去几年中解决了异常分析的波浪问题引起了重大关注。众所周知,认为每个波长的固定数量的自由度导致增加误差,因为考虑更高的波数。与传统的有限元方法相比,这种行为通常被引用为污染误差,显着提高了异步测量分析。处理污染以及代表确切几何形状的能力的改善是Isogeometic分析所接受的注意的主要原因。此外,使用高阶元件还具有在该范围内的低阶元件上的主要优点。然而,它仍然有待迭代线性溶剂,通常需要求解高频波问题,而是在使用异构测定分析时执行的,与特别是在高多项式令上。本文是在这方面的第一项研究之一。在这项工作中,我们研究了求解了所产生的ISOGeometric分析的线性系统的普遍存在的最小残余方法,标准的Krylov子空间迭代方法。此外,我们研究了一些最近提出的预提议的预处理器用于亥姆霍兹问题,如移动Laplace或Ilu,具有复杂的换档预处理器以及它们如何用高阶ISOGeometic分析和有限元方法进行。通常,结果表明,当与预先处理和非预先配置的线性系统的有限元方法相比,在收敛所需的迭代数量方面使用异构测量分析。我们使用特征值光谱来了解这种改进。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号