首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hybrid non-uniform recursive subdivision with improved convergence rates
【24h】

Hybrid non-uniform recursive subdivision with improved convergence rates

机译:杂交非均匀递归细分,具有改善的收敛速率

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new non-uniform subdivision surface representation, called hybrid non-uniform subdivision surface (for short, HNUSS). The subdivision scheme is constructed through two steps. The first step inserts a set of edges and converts a valence-n extraordinary point into a valence-n face. The second step combines both primal and dual subdivision schemes to define the subdivision rules. The developed subdivision scheme generalizes bi-cubic NURBS to arbitrary topology and is proved to be G(1)-continuous for any valence extraordinary points and any non-negative knot intervals. The HNUSS limit surface has comparable shape quality as non-uniform subdivision via eigen-polyhedron (Li et al., 2016) and has better shape quality than all the other subdivision schemes. In addition, numerical experiments show that HNUSS based isogeometric analysis yields improved convergence rates compared to any existing non-uniform subdivision schemes. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了一种新的非均匀细分表面表示,称为混合非均匀细分表面(用于短,HNASS)。细分方案是通过两个步骤构建的。第一步将一组边缘插入并将价值-N非凡点转换成价值-N面。第二步结合了原始和双分区方案来定义细分规则。发达的细分计划将Bi-Cubic NURBS推广到任意拓扑,被证明是G(1) - 对于任何价值的非凡点和任何非负结间隔。 Hnuss极限表面具有可与通过Eigen-Polyhedron(Li等,2016)的不均匀细分的形状质量相当的形状质量,并且具有比所有其他细分计划更好的形状质量。此外,与任何现有的非均匀细分方案相比,数值实验表明,基于HNAS的异诊测分析产生了改善的收敛速率。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号