首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Hybrid non-uniform recursive subdivision with improved convergence rates
【24h】

Hybrid non-uniform recursive subdivision with improved convergence rates

机译:具有提高的收敛速度的混合非均匀递归细分

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new non-uniform subdivision surface representation, called hybrid non-uniform subdivision surface (for short, HNUSS). The subdivision scheme is constructed through two steps. The first step inserts a set of edges and converts a valence-n extraordinary point into a valence-n face. The second step combines both primal and dual subdivision schemes to define the subdivision rules. The developed subdivision scheme generalizes bi-cubic NURBS to arbitrary topology and is proved to be G(1)-continuous for any valence extraordinary points and any non-negative knot intervals. The HNUSS limit surface has comparable shape quality as non-uniform subdivision via eigen-polyhedron (Li et al., 2016) and has better shape quality than all the other subdivision schemes. In addition, numerical experiments show that HNUSS based isogeometric analysis yields improved convergence rates compared to any existing non-uniform subdivision schemes. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文介绍了一种新的非均匀细分曲面表示形式,称为混合非均匀细分曲面(简称HNUSS)。细分方案通过两个步骤构造。第一步插入一组边,并将价n非寻常点转换为价n面。第二步结合原始细分方案和双重细分方案来定义细分规则。所开发的细分方案将双三次NURBS推广到任意拓扑,并且对于任何价态非凡点和任何非负结区间,证明其都是G(1)-连续的。 HNUSS极限曲面的形状质量与通过本征多面体进行的不均匀细分具有可比性(Li等,2016),并且具有比所有其他细分方案更好的形状质量。此外,数值实验表明,与任何现有的非均匀细分方案相比,基于HNUSS的等几何分析可提高收敛速度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号