首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Systems of Gaussian process models for directed chains of solvers
【24h】

Systems of Gaussian process models for directed chains of solvers

机译:用于定向链的高斯工艺模型系统

获取原文
获取原文并翻译 | 示例

摘要

The simulation of complex multi-physics phenomena often relies on a System of Solvers (SoS), which we define here as a set of interdependent solvers where the output of an upstream solver is the input of downstream solvers. Constructing a surrogate model of a SoS presents a clear interest when multiple evaluations of the system are needed, for instance to perform uncertainty quantification and global sensitivity analyses, the resolution of optimization or control problems, and generally any task based on fast query evaluations. In this work, we develop an original mathematical framework, based on Gaussian Process (GP) models, to construct a global surrogate model of the directed SoS, (i.e., only featuring one-way dependencies between solvers). The two central ideas of the proposed approach are, first, to determine a local GP model for each solver constituting the SoS and, second, to define the prediction as the composition of the individual GP models constituting a system of GP models (SoGP). We further propose different adaptive sampling strategies for the construction of the SoGP. These strategies use the decomposition of the SoGP prediction variance into individual contributions of the constitutive GP models and on extensions to SoGP of the Maximum Mean Square Predictive Error criterion. We finally assess the performance of the SoGP framework on several SoS involving different numbers of solvers and structures of input dependencies. The results show that the SoGP framework is very flexible and can handle different types of SoS, with a significantly reduced construction cost (measured by the number of training samples) compared to constructing a unique GP model of the SoS. (C) 2019 Elsevier B.V. All rights reserved.
机译:复杂多物理现象的仿真通常依赖于求解器(SOS)的系统,我们在此定义为一组相互依赖的求解器,其中上游求解器的输出是下游溶剂的输入。在需要对系统的多个评估时,构建SOS的代理模型呈现了明确的兴趣,例如为了执行不确定性量化和全局敏感性分析,优化或控制问题的分辨率,以及基于快速查询评估的任何任务。在这项工作中,我们开发了一个原始的数学框架,基于高斯过程(GP)模型,构建指向SOS的全球代理模型(即,仅在求解器之间的单向依赖项。首先,所提出的方法的两个中央观点是为构成SOS的每个求解器确定本地GP模型,以将预测定义为构成GP模型(SOGP)系统的单独GP模型的组成。我们进一步提出了用于构建SOGP的不同自适应采样策略。这些策略使用SOGP预测方差分解成组成型GP模型的个体贡献以及最大均线预测误差标准的SOGP的延伸。我们终于评估了Sogp框架在涉及不同数量的求解器和输入依赖性结构的SOS上的性能。结果表明,与构建SOS的独特GP模型相比,SOGP框架非常灵活,可以处理不同类型的SOS,其施工成本显着降低(通过训练样本的数量测量)。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号