首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Systems of Gaussian process models for directed chains of solvers
【24h】

Systems of Gaussian process models for directed chains of solvers

机译:用于求解器定向链的高斯过程模型系统

获取原文
获取原文并翻译 | 示例

摘要

The simulation of complex multi-physics phenomena often relies on a System of Solvers (SoS), which we define here as a set of interdependent solvers where the output of an upstream solver is the input of downstream solvers. Constructing a surrogate model of a SoS presents a clear interest when multiple evaluations of the system are needed, for instance to perform uncertainty quantification and global sensitivity analyses, the resolution of optimization or control problems, and generally any task based on fast query evaluations. In this work, we develop an original mathematical framework, based on Gaussian Process (GP) models, to construct a global surrogate model of the directed SoS, (i.e., only featuring one-way dependencies between solvers). The two central ideas of the proposed approach are, first, to determine a local GP model for each solver constituting the SoS and, second, to define the prediction as the composition of the individual GP models constituting a system of GP models (SoGP). We further propose different adaptive sampling strategies for the construction of the SoGP. These strategies use the decomposition of the SoGP prediction variance into individual contributions of the constitutive GP models and on extensions to SoGP of the Maximum Mean Square Predictive Error criterion. We finally assess the performance of the SoGP framework on several SoS involving different numbers of solvers and structures of input dependencies. The results show that the SoGP framework is very flexible and can handle different types of SoS, with a significantly reduced construction cost (measured by the number of training samples) compared to constructing a unique GP model of the SoS. (C) 2019 Elsevier B.V. All rights reserved.
机译:复杂的多物理现象的仿真通常依赖于求解器系统(SoS),我们在这里将其定义为一组相互依赖的求解器,其中上游求解器的输出是下游求解器的输入。当需要对系统进行多次评估(例如执行不确定性量化和全局灵敏度分析,优化或控制问题的解决以及通常基于快速查询评估的任何任务)时,构建SoS的替代模型会引起人们的明显兴趣。在这项工作中,我们基于高斯过程(GP)模型开发了一个原始的数学框架,以构建有向SoS的全局替代模型(即仅具有求解器之间的单向依赖关系)。所提出方法的两个主要思想是,首先,为构成SoS的每个求解器确定局部GP模型;其次,将预测定义为构成GP模型系统(SoGP)的各个GP模型的组成。我们进一步为SoGP的构建提出了不同的自适应采样策略。这些策略将SoGP预测方差的分解分解为本构GP模型的各个贡献,并扩展了对最大均方预测误差标准的SoGP。我们最终评估了SoGP框架在几种SoS上的性能,这些SoS涉及不同数量的求解器和输入依赖项的结构。结果表明,SoGP框架非常灵活,可以处理不同类型的SoS,与构建SoS的独特GP模型相比,其构建成本(通过训练样本的数量衡量)大大降低。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号