首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A large rotation finite element analysis of 3D beams by incremental rotation vector and exact strain measure with all the desirable features
【24h】

A large rotation finite element analysis of 3D beams by incremental rotation vector and exact strain measure with all the desirable features

机译:具有增量旋转矢量和精确应变测量的3D光束大旋转有限元分析,具有所有所需的功能

获取原文
获取原文并翻译 | 示例

摘要

Different strategies based on rotation vector and exact strain measure have been proposed over the years for analyzing flexible bodies undergoing arbitrary large rotations. To avoid the singularity of the vector-like parametrization, the interpolation of the incremental rotation vector is the most popular approach in this context, even if this leads to path dependence and numerical instability, i.e. error accumulation. It is also non objective, although both objectivity and path independence are recovered with h and p refinement. Corotational approaches do not have these drawbacks, even though the geometrically exact model is achieved by mesh refinement. In this work, we develop a novel strategy which uses the incremental nodal rotation vectors to define corotational nodal rotations, which are then interpolated for the evaluation of the nonlinear strains. This choice makes the approach singularity-free, allows for additive updates within each increment and preserves all the features of the theoretical problem for any mesh and interpolation: rotational variables, objectivity, exact strain measure, path independence and symmetric stiffness matrix for conservative loads. This last property is a consequence of the direct differentiation of the relation between local and global rotations, whose compact form also makes a simple and general definition of the internal forces and the tangent stiffness for any order of interpolation possible. In addition, we show how the common approach of interpolating incremental vectors can be made stable by a simple updating procedure based on local rotations carried out at the end of each increment in order to avoid cumulative errors. Geometrically exact 3D beams are considered as a demonstrative example. An iterative strategy based on mixed integration points is used to solve the nonlinear discrete equations efficiently. (C) 2019 Elsevier B.Y. All rights reserved.
机译:多年来,已经提出了基于旋转矢量和精确应变测量的不同策略来分析经受任意大旋转的柔性体。为了避免类似于矢量的参数化的奇异性,增量旋转矢量的插值在这种情况下是最流行的方法,即使这会导致路径依赖性和数值不稳定(即错误累积)。这也是非客观的,尽管通过h和p细化可以恢复客观性和路径独立性。即使几何形状精确的模型是通过网格细化实现的,配角方法也没有这些缺点。在这项工作中,我们开发了一种新颖的策略,该策略使用增量节点旋转矢量来定义相关的节点旋转,然后将其插值以评估非线性应变。这种选择使方法无奇点,允许在每个增量内进行累加更新,并保留了任何网格和插值的理论问题的所有特征:旋转变量,客观性,精确应变测量,路径独立性和保守载荷的对称刚度矩阵。最后一个属性是局部旋转和全局旋转之间关系的直接区分的结果,其紧凑的形式还使内力和切线刚度的任何顺序插值都可以简单而通用地定义。另外,我们展示了如何通过基于在每个增量的末尾执行的局部旋转的简单更新过程来使插值增量矢量的通用方法变得稳定,以避免累积误差。几何上精确的3D光束被视为示例。采用基于混合积分点的迭代策略有效地求解了非线性离散方程。 (C)2019 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号