首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis
【24h】

Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis

机译:具有粘结层的深层材料网络:多阶段训练和界面破坏分析

获取原文
获取原文并翻译 | 示例

摘要

A fundamental issue in multiscale materials modeling and design is the consideration of traction-separation behavior at the interface. By enriching the deep material network (DMN) with cohesive layers, the paper presents a novel data-driven material model which enables accurate and efficient prediction of multiscale responses for heterogeneous materials with interfacial effect. In the newly invoked cohesive building block, the fitting parameters have physical meanings related to the length scale and orientation of the cohesive layer. It is shown that the enriched material network can be effectively optimized via a multi-stage training strategy, with training data generated only from linear elastic direct numerical simulation (DNS). The extrapolation capability of the method to unknown material and loading spaces is demonstrated through the debonding analysis of a unidirectional fiber-reinforced composite, where the interface behavior is governed by an irreversible softening mixed-mode cohesive law. Its predictive accuracy is validated against the nonlinear path-dependent DNS results, and the reduction in computational time is particularly significant. (C) 2020 Elsevier B.V. All rights reserved.
机译:多尺度材料建模和设计中的一个基本问题是考虑界面处的牵引分离行为。通过丰富具有粘结层的深层材料网络(DMN),本文提出了一种新颖的数据驱动材料模型,该模型能够准确有效地预测具有界面效应的异质材料的多尺度响应。在新调用的内聚构造块中,拟合参数具有与内聚层的长度尺度和方向有关的物理含义。结果表明,仅通过线性弹性直接数值模拟(DNS)生成的训练数据即可通过多阶段训练策略有效地优化富集物质网络。通过单向纤维增强复合材料的脱粘分析证明了该方法对未知材料和载荷空间的外推能力,其中界面行为受不可逆的软化混合模式内聚规律控制。针对非线性路径相关的DNS结果验证了其预测准确性,并且计算时间的减少尤为重要。 (C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号