首页> 外文期刊>Neural processing letters >Multi-stage Genetic Algorithm and Deep Neural Network for Robot Execution Failure Detection
【24h】

Multi-stage Genetic Algorithm and Deep Neural Network for Robot Execution Failure Detection

机译:用于机器人执行故障检测的多阶段遗传算法和深神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a multi-stage genetic algorithm that allows to automatically initialize deep multilayer perceptron neural network models to train it for prediction of robot execution failures. The proposed genetic algorithm system is divided on three stages, the first stage consists of initializing number of hidden layers. The second stage aims to fix number of neurons in each hidden layer. The final stage generates the activation function and the optimizer used to train neural network models. The next step is the application of the generated neural network models to predict robot execution failures. The aim of this approach is giving a robot many models so it can better take a more precise decision, since there is no scientific method to choose neural network model, genetic algorithm allows to generate many models automatically. Results obtained in this study show the efficiency of deep neural networks on robotic failures detection, as well as the efficiency of genetic algorithms to generate different models automatically which prevent the manual setup.
机译:在本文中,我们提出了一种多级遗传算法,允许自动初始化深层多层的Perceptron神经网络模型,以培训它以预测机器人执行失败。所提出的遗传算法系统分为三个阶段,第一阶段包括初始化隐藏层的数量。第二阶段旨在修复每个隐藏层中的神经元数。最终阶段生成激活功能和用于培训神经网络模型的优化器。下一步是应用生成的神经网络模型来预测机器人执行失败。这种方法的目的是给机器人提供许多模型,所以它可以更好地采取更精确的决定,因为没有科学方法选择神经网络模型,遗传算法允许自动生成许多模型。本研究中获得的结果表明,遗传算法的深度神经网络的效率,以及自动产生不同型号的遗传算法,防止手动设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号