首页> 外文期刊>Engineering with Computers >The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition
【24h】

The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition

机译:六种神经进化分类技术的性能结合多层感知在两层粘性边坡稳定性分析和故障识别中

获取原文
获取原文并翻译 | 示例

摘要

Six population-based hybrid algorithms are applied to train the multilayer perceptron (MLP) to improve the classification accuracy, in the stability assessment. A complex problem of slope stability against failure is designed in Optum G2 software. Considering four key factors of shear strength of clayey soil, slope angle, the ratio of foundation distance from the slope to the foundation length, and the applied surcharge, the stability or failure of the proposed slope are anticipated. The provided data are used to develop the MLP combined with biogeography-based optimization (BBO), ant colony optimization (ACO), genetic algorithm (GA), evolutionary strategy (ES), particle swarm optimization (PSO) and probability-based incremental learning (PBIL). The results revealed that the BBO-MLP with the obtained area under the receiving operating characteristic curve (AUROC) of 0.995 and the classification ratio (CR) of 92.4% is the most accurate model followed by GA-MLP (AUROC = 0.960 and CR = 84.3%), PBIL-MLP (AUROC = 0.948 and CR = 79.3%), ES-MLP (AUROC = 0.879 and CR = 65.7%), PSO-MLP (AUROC = 0.878 and CR = 71.3%), and ACO-MLP (AUROC = 0.798 and CR = 60.7%).
机译:在稳定性评估中,应用六种基于人口的混合算法培训多层的Herceptron(MLP)以提高分类准确性。 OPTUM G2软件设计了对失效稳定性的复杂问题。考虑到粘土泥土剪切强度的四个关键因素,坡度,从坡度与基础长度的基础距离与施加附加费,施加坡度的稳定性或失效。所提供的数据用于开发MLP结合基于生物地理的优化(BBO),蚁群优化(ACO),遗传算法(GA),进化策略(GA),粒子群优化(PSO)和基于概率的增量学习(PBIL)。结果显示,在0.995的接收操作特性曲线(Auroc)下具有所得面积的BbO-MLP和92.4%的分类比(Cr)是最精确的模型,然后是Ga-MLP(Auroc = 0.960和Cr = 84.3%),PbIL-MLP(Auroc = 0.948和Cr = 79.3%),ES-MLP(Auroc = 0.879和Cr = 65.7%),PSO-MLP(Auroc = 0.878和Cr = 71.3%),以及ACO-MLP (Auroc = 0.798和Cr = 60.7%)。

著录项

  • 来源
    《Engineering with Computers》 |2020年第4期|1705-1714|共10页
  • 作者

    Chao Yuan; Hossein Moayedi;

  • 作者单位

    College of Architecture and Civil Engineering Xi'an University of Science and Technology Xi'an 710054 Shaanxi China;

    Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam Faculty of Civil Engineering Ton Duc Thang University Ho Chi Minh City Vietnam;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Classification; Evolutionary algorithms; Optum G2; PBIL; BBO;

    机译:分类;进化算法;optum g2;PBIL;BBO.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号