首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stabilized cut streamline diffusion finite element method for convection-diffusion problems on surfaces
【24h】

A stabilized cut streamline diffusion finite element method for convection-diffusion problems on surfaces

机译:表面对流扩散问题的稳定割线扩散有限元方法

获取原文
获取原文并翻译 | 示例

摘要

We develop a stabilized cut finite element method for the stationary convection-diffusion problem on a surface embedded in R-d. The cut finite element method is based on using an embedding of the surface into a three dimensional mesh consisting of tetrahedra and then using the restriction of the standard piecewise linear continuous elements to a piecewise linear approximation of the surface. The stabilization consists of a standard streamline diffusion stabilization term on the discrete surface and a so called normal gradient stabilization term on the full tetrahedral elements in the active mesh. We prove optimal order a priori error estimates in the standard norm associated with the streamline diffusion method and bounds for the condition number of the resulting stiffness matrix. The condition number is of optimal order for a specific choice of method parameters. Numerical examples supporting our theoretical results are also included. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们针对嵌入R-d的表面上的固定对流扩散问题,开发了一种稳定的切割有限元方法。切割有限元方法的基础是:将表面嵌入到由四面体组成的三维网格中,然后将标准分段线性连续元素限制为表面的分段线性近似。稳定化由离散表面上的标准流线扩散稳定化项和活动网格中完整四面体元素上的所谓正梯度稳定化项组成。我们在与流线扩散方法相关的标准规范中证明了最优阶先验误差估计,并确定了所得刚度矩阵的条件数的范围。对于方法参数的特定选择,条件编号具有最佳顺序。还包括支持我们理论结果的数值示例。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号