首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Evidence-theory-based uncertain parameter identification method for mechanical systems with imprecise information
【24h】

Evidence-theory-based uncertain parameter identification method for mechanical systems with imprecise information

机译:信息不精确的机械系统基于证据理论的不确定参数辨识方法

获取原文
获取原文并翻译 | 示例

摘要

In many mechanical engineering practices, the sample information is usually imprecise due to the complex objective environment or various subjective cognitions. In this study, a kind of inverse problem for identifying the uncertain system parameters with imprecise information is investigated by using the evidence theory. First, the uncertain input parameters to be identified are approximately characterized by evidence variables with subinterval-type focal elements. Through the optimization procedure executed in the given computational model, the output response can be expressed as a group of interval numbers with basic probability assignment (BPA). In the subsequent inverse analysis framework, by cumulating the imprecise experimental response measurements with belief degrees to update the response BPAs, the related interval range of unknown evidence variables can be gradually calibrated toward the true value. To improve the optimization efficiency of output response calculation with respect to various focal elements, a relatively simple metamodel is established as an alternative of the original computational model, where the Legendre-type polynomial and Clenshaw-Curtis point are respectively utilized as the basis function and sample construction strategy. Eventually, numerical results in two examples verify that the uncertain parameter identification can be effectively achieved by the presented method. (C) 2019 Elsevier B.Y. All rights reserved.
机译:在许多机械工程实践中,由于复杂的客观环境或各种主观认知,样本信息通常不准确。在这项研究中,利用证据理论研究了一种识别信息不精确的不确定系统参数的逆问题。首先,要确定的不确定输入参数大致由具有子间隔类型焦点元素的证据变量来表征。通过在给定的计算模型中执行的优化过程,可以将输出响应表示为一组具有基本概率分配(BPA)的区间数。在随后的逆分析框架中,通过用信念度累计不精确的实验响应测量值以更新响应BPA,可以将未知证据变量的相关区间范围逐步朝着真实值校准。为了提高针对各个焦点元素的输出响应计算的优化效率,建立了一个相对简单的元模型作为原始计算模型的替代方案,其中分别使用Legendre型多项式和Clenshaw-Curtis点作为基础函数,样本构建策略。最终,两个实例的数值结果验证了所提出的方法可以有效地实现不确定参数的识别。 (C)2019 Elsevier B.Y.版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号