首页> 外文OA文献 >A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems - Part II: Applications to Vehicle Systems
【2h】

A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems - Part II: Applications to Vehicle Systems

机译:基于多项式混沌的贝叶斯方法估计机械系统的不确定参数-第二部分:车辆系统的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This is the second part of a two-part article. In the first part, a new computational approach for parameter estimation was proposed based on the application of the polynomial chaos theory. The maximum likelihood estimates are obtained by minimizing a cost function derived from the Bayesian theorem. In this part, the new parameter estimation method is illustrated on a nonlinear four-degree-of-freedom roll plane model of a vehicle in which an uncertain mass with an uncertain position is added on the roll bar. The value of the mass and its position are estimated from periodic observations of the displacements and velocities across the suspensions. Appropriate excitations are needed in order to obtain accurate results. For some excitations, different combinations of uncertain parameters lead to essentially the same time responses, and no estimation method can work without additional information. Regularization techniques can still yield most likely values among the possible combinations of uncertain parameters resulting in the same time responses than the ones observed. When using appropriate excitations, the results obtained with this approach are close to the actual values of the parameters. The accuracy of the estimations has been shown to be sensitive to the number of terms used in the polynomial expressions and to the number of collocation points, and thus it may become computationally expensive when a very high accuracy of the results is desired. However, the noise level in the measurements affects the accuracy of the estimations as well. Therefore, it is usually not necessary to use a large number of terms in the polynomial expressions and a very large number of collocation points since the addition of extra precision eventually affects the results less than the effect of the measurement noise. Possible applications of this theory to the field of vehicle dynamics simulations include the estimation of mass, inertia properties, as well as other parameters of interest.
机译:这是分两部分的文章的第二部分。在第一部分中,基于多项式混沌理论的应用,提出了一种新的参数估计计算方法。通过最小化从贝叶斯定理得出的成本函数,可以获得最大似然估计。在这一部分中,在车辆的非线性四自由度侧倾平面模型上说明了新的参数估计方法,在该模型中,在侧倾杆上添加了具有不确定位置的不确定质量。质量值及其位置是通过对悬架上的位移和速度进行定期观测来估计的。为了获得准确的结果,需要适当的激励。对于某些激励,不确定参数的不同组合会导致基本相同的时间响应,并且没有附加信息,任何估算方法都无法工作。正则化技术仍可以在不确定参数的可能组合中产生最可能的值,从而导致与观察到的时间响应相同的时间响应。当使用适当的激励时,用这种方法获得的结果接近于参数的实际值。已经表明,估计的精度对多项式表达式中使用的项的数量以及并置点的数量敏感,因此,当需要非常高的结果精度时,它可能在计算上变得昂贵。但是,测量中的噪声水平也会影响估计的准确性。因此,通常不需要在多项式表达式中使用大量的项和大量的并置点,因为增加额外的精度最终对结果的影响小于测量噪声的影响。该理论在车辆动力学仿真领域的可能应用包括质量,惯性特性以及其他相关参数的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号