首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse Bayesian learning framework
【24h】

An efficient and robust adaptive sampling method for polynomial chaos expansion in sparse Bayesian learning framework

机译:稀疏贝叶斯学习框架中多项式混沌扩展的高效鲁棒自适应采样方法

获取原文
获取原文并翻译 | 示例

摘要

Sparse polynomial chaos expansion has been widely used to tackle problems of function approximation in the field of uncertain quantification. The accuracy of PCE depends on how to construct the experimental design. Therefore, adaptive sampling methods of designs of experiment are raised. Classic designs of experiment for PCE are based on least-square minimization techniques, where the design space is only defined by the inputs without involving the responses of the system. To overcome this limitation, a novel adaptive sampling method is introduced in sparse Bayesian learning framework. The design point is enriched sequentially by maximizing a generalized expectation of loss function criterion which allows an effective use of all the information available, on which two adaptive strategies are derived to get a balance between the global exploration and the local exposition via the error information from the previous iteration. The numerical results show that the proposed method is superior to classic design of experiment in terms of efficiency and robustness. (C) 2019 Elsevier B.V. All rights reserved.
机译:稀疏多项式混沌展开已广泛用于解决不确定量化领域中的函数逼近问题。 PCE的准确性取决于如何构建实验设计。因此,提出了实验设计的自适应采样方法。 PCE的经典实验设计基于最小二乘最小化技术,其中设计空间仅由输入定义,而不涉及系统响应。为了克服这一限制,在稀疏贝叶斯学习框架中引入了一种新颖的自适应采样方法。通过最大化损失函数准则的广义期望,可以顺序地丰富设计点,从而可以有效利用所有可用信息,在此基础上派生两种自适应策略,以通过来自以下方面的错误信息在全局探索和局部博览会之间取得平衡上一次迭代。数值结果表明,该方法在效率和鲁棒性方面优于经典的实验设计。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号