首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A quadrilateral G~1-conforming finite element for the Kirchhoff plate model
【24h】

A quadrilateral G~1-conforming finite element for the Kirchhoff plate model

机译:Kirchhoff板模型的四边形G〜1协调有限元

获取原文
获取原文并翻译 | 示例

摘要

A quadrilateral bi-cubic G(1)-conforming finite element for the analysis of Kirchhoff plates is presented. The rational version of the Gregory patch proposed by Loop et al. (2009) is the starting point of our formulation. This version of the Gregory patch consists in rational enhancement of the bi-cubic Bezier interpolation representing a suitable tool for designing G(1) -conforming quadrilateral element on C-0-conforming un-structured meshes. The element includes as additional degrees of freedom the edge rotations like in the Loof-formulations but is only displacement based.Because of the presence of the rational functions, the second derivatives of the interpolation present a finite discontinuity at the corners of the element, that prevent the element from passing the bending patch test. The element so formulated does not present optimal rate of convergence under h-refinement operation. The formulation is enhanced enforcing these discontinuities to be zero by means of Lagrange multipliers. It is shown that with these constraints the element passes the patch test and presents optimal rate of convergence for unstructured mesh. In this way the rational conforming approximation collapses into a conforming re-arrangement of the complete bi-cubic Bezier interpolation.Some examples and benchmarks are presented in order to test the performance of the element for the Kirchhoff plate model. (C) 2018 Elsevier B.V. All rights reserved.
机译:提出了用于分析基尔霍夫板的四边形双三次G(1)有限元。 Loop等人提出的Gregory补丁的合理版本。 (2009年)是我们制定的起点。此版本的Gregory修补程序包括对双三次Bezier插值的合理增强,该插值代表了一种用于在符合C-0的非结构化网格上设计符合G(1)的四边形元素的合适工具。元素包括像Loof公式中一样的附加自由度边旋转,但仅基于位移。由于存在有理函数,插值的二阶导数在元素的角处存在有限的不连续点,即防止元件通过弯曲补丁测试。如此配制的元素在h精炼操作下不能表现出最佳的收敛速度。通过拉格朗日乘数将这些不连续性强制为零,从而增强了公式。结果表明,在这些约束条件下,单元通过了补丁测试,并为非结构化网格提供了最佳收敛速度。这样,有理一致逼近就变成了完全双三次Bezier插值的一致重排。给出了一些例子和基准来测试基尔霍夫平板模型的单元性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号