首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Two new triangular G~1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates
【24h】

Two new triangular G~1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates

机译:两个新的具有三次边旋转的三角形G〜1三角形有限元,用于分析Kirchhoff板

获取原文
获取原文并翻译 | 示例

摘要

Two triangular G(1)-conforming elements, based on the triangular Gregory patch, suitable for the analysis of the Kirchhoff plate model are presented. Both have cubic normal derivative along the sides, so that they can be effectively used in combination with generalized Hermitian elements.The Gregory patch consists in a rational enhancement of the base-polynomial spaces useful to design G(1)-conforming elements on general C-0-conforming unstructured meshes.Because of the presence of the rational functions, the second derivatives at the corners of the element present finite discontinuities, that prevent the elements from passing the bending patch test. The discontinuities are removed using a constrained version of the Gregory patch, with Lagrange multipliers. In this way, the rational conforming space collapses into a conforming rearrangement of the original polynomial interpolant spaces.The proposed formulation design elements that pass the bending patch test and present optimal rate of convergence on general unstructured meshes. (C) 2019 Elsevier B.V. All rights reserved.
机译:提出了两个三角形G(1)-符合元素,基于三角形Gregory面片,适用于Kirchhoff平板模型的分析。两者都在侧面具有立方正态导数,因此可以有效地与广义Hermitian元素结合使用.Gregory修补程序包括对基础多项式空间的合理增强,可用于设计通用C上符合G(1)的元素符合-0的非结构化网格。由于存在有理函数,因此元素角上的二阶导数呈现有限的不连续性,从而阻止了元素通过弯曲补丁测试。使用带有Lagrange乘数的Gregory补丁的受约束版本可以消除不连续性。这样,有理顺应性空间就崩溃为原始多项式插值空间的相符重排。拟议的配方设计元素通过了弯曲补丁测试,并在一般的非结构化网格上呈现了最佳收敛速度。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号