首页> 外文期刊>Computer Communications >A slotted CSMA based reinforcement learning approach for extending the lifetime of underwater acoustic wireless sensor networks
【24h】

A slotted CSMA based reinforcement learning approach for extending the lifetime of underwater acoustic wireless sensor networks

机译:基于时隙CSMA的强化学习方法,可延长水下声无线传感器网络的寿命

获取原文
获取原文并翻译 | 示例

摘要

Underwater acoustic wireless sensor networks (UA-WSNs) are capable of supporting underwater missions. Due to the harsh environment, replacing or recharging battery for underwater sensors are difficult or costly, thus UA-WSN systems must be energy efficient. Although a large number of energy efficient schemes have been proposed for terrestrial wireless sensor networks, the fundamental differences between underwater acoustic channel and its terrestrial counterparts make those schemes perform poorly in underwater acoustic communications. In this work, we present an energy efficient architecture for UA-WSNs, which employs a reinforcement learning algorithm and a slotted Carrier Sensing Multiple Access (slotted CSMA) protocol. Due to the reinforcement learning algorithm, the proposed system is capable of optimising its parameters to adapt to the underwater environment after having been deployed. Simulation results show that the lifetime of the network is extended significantly with the proposed architecture by lowering the number of collisions and retransmissions of data packets.
机译:水下声无线传感器网络(UA-WSN)能够支持水下任务。由于恶劣的环境,水下传感器的电池更换或充电很困难或成本很高,因此UA-WSN系统必须高效节能。尽管已经为地面无线传感器网络提出了许多节能方案,但是水下声信道与其地面对应物之间的根本区别使得这些方案在水下声通信中表现不佳。在这项工作中,我们提出了一种针对UA-WSN的节能体系结构,该体系结构采用了增强学习算法和带时隙的载波侦听多路访问(带时隙的CSMA)协议。由于采用了强化学习算法,因此该系统在部署后能够优化其参数以适应水下环境。仿真结果表明,通过减少数据包的冲突和重传次数,所提出的体系结构显着延长了网络的寿命。

著录项

  • 来源
    《Computer Communications》 |2013年第9期|1094-1099|共6页
  • 作者

    Lu Jin; Defeng (David) Huang;

  • 作者单位

    School of Electrical, Electronic and Computer Engineering, M018, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia;

    School of Electrical, Electronic and Computer Engineering, M018, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Underwater acoustics; Wireless sensor networks; Reinforcement learning; Slotted CSMA; Energy efficient;

    机译:水下声学;无线传感器网络;强化学习;开槽CSMA;高效节能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号